IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v86y2017i3d10.1007_s11134-017-9535-0.html
   My bibliography  Save this article

On non-equilibria threshold strategies in ticket queues

Author

Listed:
  • Yoav Kerner

    (Ben-Gurion University)

  • Eliran Sherzer

    (Ben-Gurion University)

  • Mor Ann Yanco

    (Ben-Gurion University)

Abstract

In many real-life queueing systems, a customer may balk upon arrival at a queueing system, but other customers become aware of it only at the time the balking customer was to start service. Naturally, the balking is an outcome of the queue length, and the decision is based on a threshold. Yet the inspected queue length contains customers who balked. In this work, we consider a Markovian queue with infinite capacity and with customers that are homogeneous with respect to their cost reward functions. We show that that no threshold strategy can be a Nash equilibrium strategy. Furthermore, we show that for any threshold strategy adopted by all, the individual’s best response is a double threshold strategy. That is, join if and only if one of the following is true: (i) the inspected queue length is smaller than one threshold, or (ii) the inspected queue length is larger than a second threshold. Our model is under the assumption that the response time of the server when he finds out that a customer balked is negligible. We also discuss the validity of the result when the response time is not negligible.

Suggested Citation

  • Yoav Kerner & Eliran Sherzer & Mor Ann Yanco, 2017. "On non-equilibria threshold strategies in ticket queues," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 419-431, August.
  • Handle: RePEc:spr:queues:v:86:y:2017:i:3:d:10.1007_s11134-017-9535-0
    DOI: 10.1007/s11134-017-9535-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-017-9535-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-017-9535-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
    2. Susan H. Xu & Long Gao & Jihong Ou, 2007. "Service Performance Analysis and Improvement for a Ticket Queue with Balking Customers," Management Science, INFORMS, vol. 53(6), pages 971-990, June.
    3. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tesnim Naceur & Yezekael Hayel, 2020. "Deterministic state-based information disclosure policies and social welfare maximization in strategic queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 303-328, December.
    2. Zhongbin Wang & Luyi Yang & Shiliang Cui & Jinting Wang, 2021. "In-queue priority purchase: a dynamic game approach," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 343-381, April.
    3. Gabi Hanukov & Shoshana Anily & Uri Yechiali, 2020. "Ticket queues with regular and strategic customers," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 145-171, June.
    4. Brill, P.H. & Huang, M.L. & Hlynka, M., 2020. "On the service time in a workload-barrier M/G/1 queue with accepted and blocked customers," European Journal of Operational Research, Elsevier, vol. 283(1), pages 235-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassin, Refael & Haviv, Moshe & Oz, Binyamin, 2023. "Strategic behavior in queues with arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 217-224.
    2. Tesnim Naceur & Yezekael Hayel, 2020. "Deterministic state-based information disclosure policies and social welfare maximization in strategic queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 303-328, December.
    3. Dimitrakopoulos, Y. & Burnetas, A.N., 2016. "Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control," European Journal of Operational Research, Elsevier, vol. 252(2), pages 477-486.
    4. Olga Bountali & Antonis Economou, 2019. "Equilibrium threshold joining strategies in partially observable batch service queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 231-253, June.
    5. Bountali, Olga & Economou, Antonis, 2017. "Equilibrium joining strategies in batch service queueing systems," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1142-1151.
    6. Bu, Qihui & Sun, Yun & Chai, Xudong & Liu, Liwei, 2020. "Strategic behavior and social optimization in a clearing queueing system with N-policy and stochastic restarting scheme," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    7. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    8. Czerny, Achim I. & Guo, Pengfei & Hassin, Refael, 2022. "Shall firms withhold exact waiting time information from their customers? A transport example," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 128-142.
    9. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.
    10. Zaiming Liu & Can Cao & Shan Gao, 2019. "Equilibrium Joining Strategies in the Geo / Geo K /1 Queueing System," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
    11. Ayane Nakamura & Tuan Phung-Duc, 2023. "Equilibrium Analysis for Batch Service Queueing Systems with Strategic Choice of Batch Size," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    12. Shiliang Cui & Senthil Veeraraghavan, 2016. "Blind Queues: The Impact of Consumer Beliefs on Revenues and Congestion," Management Science, INFORMS, vol. 62(12), pages 3656-3672, December.
    13. Gabi Hanukov & Shoshana Anily & Uri Yechiali, 2020. "Ticket queues with regular and strategic customers," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 145-171, June.
    14. Economou, Antonis & Logothetis, Dimitrios & Manou, Athanasia, 2022. "The value of reneging for strategic customers in queueing systems with server vacations/failures," European Journal of Operational Research, Elsevier, vol. 299(3), pages 960-976.
    15. Wang, Jinting & Zhang, Xuelu & Huang, Ping, 2017. "Strategic behavior and social optimization in a constant retrial queue with the N-policy," European Journal of Operational Research, Elsevier, vol. 256(3), pages 841-849.
    16. Antonis Economou, 2022. "How much information should be given to the strategic customers of a queueing system?," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 421-423, April.
    17. Olga Boudali & Antonis Economou, 2013. "The effect of catastrophes on the strategic customer behavior in queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 571-587, October.
    18. De Munck, Thomas & Chevalier, Philippe & Tancrez, Jean-Sébastien, 2023. "Managing priorities on on-demand service platforms with waiting time differentiation," International Journal of Production Economics, Elsevier, vol. 266(C).
    19. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    20. L D Smith & D C Sweeney & J F Campbell, 2009. "Simulation of alternative approaches to relieving congestion at locks in a river transportion system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 519-533, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:86:y:2017:i:3:d:10.1007_s11134-017-9535-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.