IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v11y2019i1d10.1007_s12469-018-00193-7.html
   My bibliography  Save this article

Vulnerability of public transportation networks against directed attacks and cascading failures

Author

Listed:
  • Antonio Candelieri

    (University of Milano-Bicocca
    Consorzio Milano-Ricerche)

  • Bruno G. Galuzzi

    (University of Milano-Bicocca)

  • Ilaria Giordani

    (University of Milano-Bicocca
    Consorzio Milano-Ricerche)

  • Francesco Archetti

    (University of Milano-Bicocca
    Consorzio Milano-Ricerche)

Abstract

This paper presents some results devoted to providing network analysis functionalities for vulnerability assessment in public transportation networks with respect to disruptive events and/or targeted attacks to stations. The results have been obtained on two public transportation networks: the bus network in Florence, Italy, and the transportation network in the Attika region, Greece. The analysis implements a topological approach, based on graph theory, using a multi-graph to model public transportation networks and analyse vulnerabilities with respect to the removal of one or more of their components. Both directed attacks and cascading failures are considered. While the first type of disruptive events is related to a static analysis, where nodes are removed according to a rank related to some centrality measures, the second type is related to a dynamic analysis, where a failure cascade is simulated making unavailable the node with the highest betweenness value. Vulnerability measures are computed as loss of connectivity and efficiency, with respect to both the two different types of disruptive events considered. This study allows to evidence potential vulnerabilities of the urban networks, that must be considered to support the planning process into the creation of resilient structures.

Suggested Citation

  • Antonio Candelieri & Bruno G. Galuzzi & Ilaria Giordani & Francesco Archetti, 2019. "Vulnerability of public transportation networks against directed attacks and cascading failures," Public Transport, Springer, vol. 11(1), pages 27-49, June.
  • Handle: RePEc:spr:pubtra:v:11:y:2019:i:1:d:10.1007_s12469-018-00193-7
    DOI: 10.1007/s12469-018-00193-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-018-00193-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-018-00193-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    2. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    3. Cats, O. & Yap, M. & van Oort, N., 2016. "Exposing the role of exposure: Public transport network risk analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 1-14.
    4. Alexander Gutfraind, 2012. "Optimizing Network Topology for Cascade Resilience," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, chapter 0, pages 37-59, Springer.
    5. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    6. Ash, J. & Newth, D., 2007. "Optimizing complex networks for resilience against cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 673-683.
    7. E. Estrada, 2006. "Network robustness to targeted attacks. The interplay of expansibility and degree distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 52(4), pages 563-574, August.
    8. Regino Criado & Miguel Romance, 2012. "Structural Vulnerability and Robustness in Complex Networks: Different Approaches and Relationships Between them," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, chapter 0, pages 3-36, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yanpeng & Chen, Lei & Jia, Chun-Xiao & Meng, Fanyuan & Liu, Run-Ran, 2023. "Non-Markovian node fragility in cascading failures on random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Joshua Auld & Hubert Ley & Omer Verbas & Nima Golshani & Josiane Bechara & Angela Fontes, 2020. "A stated-preference intercept survey of transit-rider response to service disruptions," Public Transport, Springer, vol. 12(3), pages 557-585, October.
    4. Kizhakkedath, A. & Tai, K., 2021. "Vulnerability analysis of critical infrastructure network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    5. Konstantinos Ntafloukas & Liliana Pasquale & Beatriz Martinez-Pastor & Daniel P. McCrum, 2023. "A Vulnerability Assessment Approach for Transportation Networks Subjected to Cyber–Physical Attacks," Future Internet, MDPI, vol. 15(3), pages 1-23, February.
    6. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Szymula, Christopher & Bešinović, Nikola, 2020. "Passenger-centered vulnerability assessment of railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 30-61.
    8. Xiuwen Fu & Haiqing Yao & Yongsheng Yang, 2019. "Sink-Convergence Cascading Model for Wireless Sensor Networks with Different Load-Redistribution Schemes," Complexity, Hindawi, vol. 2019, pages 1-9, June.
    9. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    10. Nikita Moiseev & Alexey Mikhaylov & Igor Varyash & Abdul Saqib, 2020. "Investigating the relation of GDP per capita and corruption index," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(1), pages 780-794, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    2. Cats, O., 2016. "The robustness value of public transport development plans," Journal of Transport Geography, Elsevier, vol. 51(C), pages 236-246.
    3. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    4. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    5. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    6. Almotahari, Amirmasoud & Yazici, Anil, 2021. "A computationally efficient metric for identification of critical links in large transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    8. Qing-Chang Lu & Shan Lin, 2019. "Vulnerability Analysis of Urban Rail Transit Network within Multi-Modal Public Transport Networks," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    9. Almotahari, Amirmasoud & Yazici, M. Anil, 2019. "A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 67-82.
    10. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    11. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    12. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    13. Alessandra Cornaro & Daniele Grechi, 2023. "Evaluation of Railway Systems: A Network Approach," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    14. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    15. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    16. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    17. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    18. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    19. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    20. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:11:y:2019:i:1:d:10.1007_s12469-018-00193-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.