IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v86y2021i2d10.1007_s11336-021-09762-5.html
   My bibliography  Save this article

Mapping Unobserved Item–Respondent Interactions: A Latent Space Item Response Model with Interaction Map

Author

Listed:
  • Minjeong Jeon

    (UNIVERSITY OF CALIFORNIA, LOS ANGELES)

  • Ick Hoon Jin

    (Yonsei University)

  • Michael Schweinberger

    (Rice University)

  • Samuel Baugh

    (UNIVERSITY OF CALIFORNIA, LOS ANGELES)

Abstract

Classic item response models assume that all items with the same difficulty have the same response probability among all respondents with the same ability. These assumptions, however, may very well be violated in practice, and it is not straightforward to assess whether these assumptions are violated, because neither the abilities of respondents nor the difficulties of items are observed. An example is an educational assessment where unobserved heterogeneity is present, arising from unobserved variables such as cultural background and upbringing of students, the quality of mentorship and other forms of emotional and professional support received by students, and other unobserved variables that may affect response probabilities. To address such violations of assumptions, we introduce a novel latent space model which assumes that both items and respondents are embedded in an unobserved metric space, with the probability of a correct response decreasing as a function of the distance between the respondent’s and the item’s position in the latent space. The resulting latent space approach provides an interaction map that represents interactions of respondents and items, and helps derive insightful diagnostic information on items as well as respondents. In practice, such interaction maps enable teachers to detect students from underrepresented groups who need more support than other students. We provide empirical evidence to demonstrate the usefulness of the proposed latent space approach, along with simulation results.

Suggested Citation

  • Minjeong Jeon & Ick Hoon Jin & Michael Schweinberger & Samuel Baugh, 2021. "Mapping Unobserved Item–Respondent Interactions: A Latent Space Item Response Model with Interaction Map," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 378-403, June.
  • Handle: RePEc:spr:psycho:v:86:y:2021:i:2:d:10.1007_s11336-021-09762-5
    DOI: 10.1007/s11336-021-09762-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09762-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09762-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Jennrich, 2002. "A simple general method for oblique rotation," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 7-19, March.
    2. Mark Wilson & Raymond Adams, 1995. "Rasch models for item bundles," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 181-198, June.
    3. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    4. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    5. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    6. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    7. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    8. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    9. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    10. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inhan Kang & Minjeong Jeon & Ivailo Partchev, 2023. "A Latent Space Diffusion Item Response Theory Model to Explore Conditional Dependence between Responses and Response Times," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 830-864, September.
    2. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    3. Meredith Langi & Minjeong Jeon, 2023. "Identifying and Supporting Academically Low-Performing Schools in a Developing Country: An Application of a Specialized Multilevel IRT Model to PISA-D Assessment Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 332-356, March.
    4. Minjeong Jeon, 2023. "Commentary: Explore Conditional Dependencies in Item Response Tree Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 803-808, September.
    5. Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).
    6. Ick Hoon Jin & Minjeong Jeon & Michael Schweinberger & Jonghyun Yun & Lizhen Lin, 2022. "Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1225-1244, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    2. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    3. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    4. Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
    5. Tracy Sweet & Samrachana Adhikari, 2020. "A Latent Space Network Model for Social Influence," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 251-274, June.
    6. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    7. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    8. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    10. Cervantes, Víctor H., 2017. "DFIT: An R Package for Raju's Differential Functioning of Items and Tests Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i05).
    11. Joshua B. Gilbert & James S. Kim & Luke W. Miratrix, 2023. "Modeling Item-Level Heterogeneous Treatment Effects With the Explanatory Item Response Model: Leveraging Large-Scale Online Assessments to Pinpoint the Impact of Educational Interventions," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 889-913, December.
    12. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    13. Eric A. Vance & Elizabeth A. Archie & Cynthia J. Moss, 2009. "Social networks in African elephants," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 273-293, December.
    14. Harold Doran, 2023. "A Collection of Numerical Recipes Useful for Building Scalable Psychometric Applications," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 37-69, February.
    15. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    16. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    17. Yan Huo & Jimmy de la Torre & Eun-Young Mun & Su-Young Kim & Anne Ray & Yang Jiao & Helene White, 2015. "A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 834-855, September.
    18. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    19. Ick Hoon Jin & Minjeong Jeon & Michael Schweinberger & Jonghyun Yun & Lizhen Lin, 2022. "Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1225-1244, November.
    20. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    21. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:86:y:2021:i:2:d:10.1007_s11336-021-09762-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.