IDEAS home Printed from https://ideas.repec.org/a/eee/intell/v91y2022ics0160289622000137.html
   My bibliography  Save this article

A randomness perspective on intelligence processes

Author

Listed:
  • Kang, Inhan
  • De Boeck, Paul
  • Partchev, Ivailo

Abstract

We study intelligence processes using a diffusion IRT model with random variability in cognitive model parameters: variability in drift rate (the trend of information accumulation toward a correct or incorrect response) and variability in starting point (from where the information accumulation starts). The random variation concerns randomness across person-item pairs and cannot be accounted for by individual and inter-item differences. Interestingly, the models explain the conditional dependencies between response accuracy and response time that are found in previous studies on cognitive ability tests, leading us to the formulation of a randomness perspective on intelligence processes. For an empirical test, we have analyzed verbal analogies data and matrix reasoning data using diffusion IRT models with different variability assumptions. The results indicate that 1) models with random variability fit better than models without, with implications for the conditional dependencies in both types of tasks; 2) for verbal analogies, random variation in drift rate seems to exist, which can be explained by person-by-item word knowledge differences; and 3) for both types of tasks, the starting point variation was also established, in line with the inductive nature of the tasks, requiring a sequential hypothesis testing process. Finally, the correlation of individual differences in drift rate and SAT suggests a meta-strategic choice of respondents to focus on accuracy rather than speed when they have a higher cognitive capacity and when the task is one for which investing in time pays off. This seems primarily the case for matrix reasoning and less so for verbal analogies.

Suggested Citation

  • Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:intell:v:91:y:2022:i:c:s0160289622000137
    DOI: 10.1016/j.intell.2022.101632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160289622000137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intell.2022.101632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    2. Francis Tuerlinckx & Paul Boeck, 2005. "Two interpretations of the discrimination parameter," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 629-650, December.
    3. Chen, Haiqin & De Boeck, Paul & Grady, Matthew & Yang, Chien-Lin & Waldschmidt, David, 2018. "Curvilinear dependency of response accuracy on response time in cognitive tests," Intelligence, Elsevier, vol. 69(C), pages 16-23.
    4. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
    5. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    8. Molenaar, Dylan & Tuerlinckx, Francis & van der Maas, Han L. J., 2015. "Fitting Diffusion Item Response Theory Models for Responses and Response Times Using the R Package diffIRT," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i04).
    9. Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
    10. Minjeong Jeon & Ick Hoon Jin & Michael Schweinberger & Samuel Baugh, 2021. "Mapping Unobserved Item–Respondent Interactions: A Latent Space Item Response Model with Interaction Map," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 378-403, June.
    11. Wim Linden & Cees Glas, 2010. "Statistical Tests of Conditional Independence Between Responses and/or Response Times on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 120-139, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inhan Kang & Minjeong Jeon & Ivailo Partchev, 2023. "A Latent Space Diffusion Item Response Theory Model to Explore Conditional Dependence between Responses and Response Times," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 830-864, September.
    2. Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.
    3. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inhan Kang & Minjeong Jeon & Ivailo Partchev, 2023. "A Latent Space Diffusion Item Response Theory Model to Explore Conditional Dependence between Responses and Response Times," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 830-864, September.
    2. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
    3. Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.
    4. Minjeong Jeon & Paul Boeck & Jevan Luo & Xiangrui Li & Zhong-Lin Lu, 2021. "Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 239-271, March.
    5. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    6. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
    7. M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
    8. Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
    9. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    10. Jinxin Guo & Xin Xu & Zhiliang Ying & Susu Zhang, 2022. "Modeling Not-Reached Items in Timed Tests: A Response Time Censoring Approach," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 835-867, September.
    11. Fang Liu & Xiaojing Wang & Roeland Hancock & Ming-Hui Chen, 2022. "Bayesian Model Assessment for Jointly Modeling Multidimensional Response Data with Application to Computerized Testing," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1290-1317, December.
    12. Maria Bolsinova & Jesper Tijmstra, 2019. "Modeling Differences Between Response Times of Correct and Incorrect Responses," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1018-1046, December.
    13. Th'eo Durandard & Matteo Camboni, 2024. "Under Pressure: Comparative Statics for Optimal Stopping Problems in Nonstationary Environments," Papers 2402.06999, arXiv.org.
    14. Jeffrey Rouder & Jordan Province & Richard Morey & Pablo Gomez & Andrew Heathcote, 2015. "The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 491-513, June.
    15. Steffi Pohl & Esther Ulitzsch & Matthias Davier, 2019. "Using Response Times to Model Not-Reached Items due to Time Limits," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 892-920, September.
    16. Udo Boehm & Maarten Marsman & Han L. J. Maas & Gunter Maris, 2021. "An Attention-Based Diffusion Model for Psychometric Analyses," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 938-972, December.
    17. Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
    18. Minjeong Jeon & Paul Boeck & Xiangrui Li & Zhong-Lin Lu, 2020. "Trivariate Theory of Mind Data Analysis with a Conditional Joint Modeling Approach," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 398-436, June.
    19. Gunter Maris & Han Maas, 2012. "Speed-Accuracy Response Models: Scoring Rules based on Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 615-633, October.
    20. Sandip Sinharay & Peter W. van Rijn, 2020. "Assessing Fit of the Lognormal Model for Response Times," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 534-568, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intell:v:91:y:2022:i:c:s0160289622000137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.