IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v84y2019i2d10.1007_s11336-018-09654-1.html
   My bibliography  Save this article

Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates

Author

Listed:
  • Christoph Kiefer

    (RWTH Aachen University)

  • Axel Mayer

    (RWTH Aachen University)

Abstract

Researchers often use regressions with a logarithmic link function to evaluate the effects of a treatment on a count variable. In order to judge the average effectiveness of the treatment on the original count scale, they compute average treatment effects, which are defined as the average difference between the expected outcomes under treatment and under control. Current practice is to evaluate the expected differences at every observation and use the sample mean of these differences as a point estimate of the average effect. The standard error for this average effect estimate is based on the implicit assumption that covariate values are fixed, i.e., do not vary across different samples. In this paper, we present a new way of analytically computing average effects based on regressions with log link using stochastic covariates and develop new formulas to obtain standard errors for the average effect. In a simulation study, we evaluate the statistical performance of our new estimator and compare it with the traditional approach. Our findings suggest that the new approach gives unbiased effect estimates and standard errors and outperforms the traditional approach when strong interaction and/or a skewed covariate is present.

Suggested Citation

  • Christoph Kiefer & Axel Mayer, 2019. "Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 422-446, June.
  • Handle: RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-09654-1
    DOI: 10.1007/s11336-018-09654-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-09654-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-09654-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James B. Hittner & Emmalee C. Owens & Rhonda J. Swickert, 2016. "Influence of Social Settings on Risky Sexual Behavior," SAGE Open, , vol. 6(1), pages 21582440166, February.
    2. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    2. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    3. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    4. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    5. Guillaume W Basse & Edoardo M Airoldi, 2018. "Model-assisted design of experiments in the presence of network-correlated outcomes," Biometrika, Biometrika Trust, vol. 105(4), pages 849-858.
    6. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    7. Bryan S. Graham, 2019. "Network Data," CeMMAP working papers CWP71/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    9. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    10. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    11. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    12. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    13. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    14. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    15. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    16. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    17. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    18. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    19. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    20. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:84:y:2019:i:2:d:10.1007_s11336-018-09654-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.