IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i4p849-858..html
   My bibliography  Save this article

Model-assisted design of experiments in the presence of network-correlated outcomes

Author

Listed:
  • Guillaume W Basse
  • Edoardo M Airoldi

Abstract

SUMMARYIn this paper we consider how to assign treatment in a randomized experiment in which the correlation among the outcomes is informed by a network available pre-intervention. Working within the potential outcome causal framework, we develop a class of models that posit such a correlation structure among the outcomes. We use these models to develop restricted randomization strategies for allocating treatment optimally, by minimizing the mean squared error of the estimated average treatment effect. Analytical decompositions of the mean squared error, due both to the model and to the randomization distribution, provide insights into aspects of the optimal designs. In particular, the analysis suggests new notions of balance based on specific network quantities, in addition to classical covariate balance. The resulting balanced optimal restricted randomization strategies are still design-unbiased when the model used to derive them does not hold. We illustrate how the proposed treatment allocation strategies improve on allocations that ignore the network structure.

Suggested Citation

  • Guillaume W Basse & Edoardo M Airoldi, 2018. "Model-assisted design of experiments in the presence of network-correlated outcomes," Biometrika, Biometrika Trust, vol. 105(4), pages 849-858.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:849-858.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    2. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    3. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    4. Huseyin Cavusoglu & Tuan Q. Phan & Hasan Cavusoglu & Edoardo M. Airoldi, 2016. "Assessing the Impact of Granular Privacy Controls on Content Sharing and Disclosure on Facebook," Information Systems Research, INFORMS, vol. 27(4), pages 848-879, December.
    5. Cosma Rohilla Shalizi & Andrew C. Thomas, 2011. "Homophily and Contagion Are Generically Confounded in Observational Social Network Studies," Sociological Methods & Research, , vol. 40(2), pages 211-239, May.
    6. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    7. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    2. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    3. Heather Mathews & Alexander Volfovsky, 2023. "Community informed experimental design," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1141-1166, October.
    4. Braun, Martin & Verdier, Valentin, 2023. "Estimation of spillover effects with matched data or longitudinal network data," Journal of Econometrics, Elsevier, vol. 233(2), pages 689-714.
    5. Vivek F. Farias & Andrew A. Li & Tianyi Peng & Andrew Zheng, 2022. "Markovian Interference in Experiments," Papers 2206.02371, arXiv.org, revised Jun 2022.
    6. Anish Agarwal & Sarah H. Cen & Devavrat Shah & Christina Lee Yu, 2022. "Network Synthetic Interventions: A Causal Framework for Panel Data Under Network Interference," Papers 2210.11355, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    2. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    3. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    4. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    5. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    6. C. Tort`u & I. Crimaldi & F. Mealli & L. Forastiere, 2020. "Modelling Network Interference with Multi-valued Treatments: the Causal Effect of Immigration Policy on Crime Rates," Papers 2003.10525, arXiv.org, revised Jun 2020.
    7. Fredrik Savje, 2021. "Causal inference with misspecified exposure mappings: separating definitions and assumptions," Papers 2103.06471, arXiv.org, revised Mar 2023.
    8. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    9. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    10. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    11. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2013. "Estimating the Impact of Means-tested Subsidies under Treatment Externalities with Application to Anti-Malarial Bednets," CREATES Research Papers 2013-06, Department of Economics and Business Economics, Aarhus University.
    12. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    13. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..
    14. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Efficient Treatment Effect Estimation in Observational Studies under Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2022.
    15. Shaina J. Alexandria & Michael G. Hudgens & Allison E. Aiello, 2023. "Assessing intervention effects in a randomized trial within a social network," Biometrics, The International Biometric Society, vol. 79(2), pages 1409-1419, June.
    16. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    17. Vivek F. Farias & Andrew A. Li & Tianyi Peng & Andrew Zheng, 2022. "Markovian Interference in Experiments," Papers 2206.02371, arXiv.org, revised Jun 2022.
    18. David Choi, 2017. "Estimation of Monotone Treatment Effects in Network Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1147-1155, July.
    19. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    20. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised Dec 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:849-858.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.