IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i2d10.1007_s11336-016-9526-9.html
   My bibliography  Save this article

GINDCLUS: Generalized INDCLUS with External Information

Author

Listed:
  • Laura Bocci

    (Sapienza University of Rome)

  • Donatella Vicari

    (Sapienza University of Rome)

Abstract

A Generalized INDCLUS model, termed GINDCLUS, is presented for clustering three-way two-mode proximity data. In order to account for the heterogeneity of the data, both a partition of the subjects into homogeneous classes and a covering of the objects into groups are simultaneously determined. Furthermore, the availability of information which is external to the three-way data is exploited to better account for such heterogeneity: the weights of both classifications are linearly linked to external variables allowing for the identification of meaningful classes of subjects and groups of objects. The model is fitted in a least-squares framework, and an efficient Alternating Least-Squares algorithm is provided. An extensive simulation study and an application on benchmark data are also presented.

Suggested Citation

  • Laura Bocci & Donatella Vicari, 2017. "GINDCLUS: Generalized INDCLUS with External Information," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 355-381, June.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-016-9526-9
    DOI: 10.1007/s11336-016-9526-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9526-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9526-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donatella Vicari & Maurizio Vichi, 2009. "Structural Classification Analysis of Three-Way Dissimilarity Data," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 121-154, August.
    2. J. Carroll & Phipps Arabie, 1983. "Indclus: An individual differences generalization of the adclus model and the mapclus algorithm," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 157-169, June.
    3. Jos M.F. Berge & Henk A.L. Kiers, 2005. "A Comparison of Two Methods for Fitting the INDCLUS Model," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 273-286, September.
    4. Paolo Giordani & Henk Kiers, 2012. "FINDCLUS: Fuzzy INdividual Differences CLUStering," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 170-198, July.
    5. Henk Kiers & Donatella Vicari & Maurizio Vichi, 2005. "Simultaneous classification and multidimensional scaling with external information," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 433-460, September.
    6. Tom Wilderjans & Dirk Depril & Iven Mechelen, 2012. "Block-Relaxation Approaches for Fitting the INDCLUS Model," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 277-296, October.
    7. Michel Wedel & Wayne DeSarbo, 1998. "Mixtures of (constrained) ultrametric trees," Psychometrika, Springer;The Psychometric Society, vol. 63(4), pages 419-443, December.
    8. Suzanne Winsberg & Geert Soete, 1993. "A latent class approach to fitting the weighted Euclidean model, clascal," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 315-330, June.
    9. Bocci, Laura & Vicari, Donatella & Vichi, Maurizio, 2006. "A mixture model for the classification of three-way proximity data," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1625-1654, April.
    10. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    11. Laura Bocci & Maurizio Vichi, 2011. "The K-INDSCAL Model for Heterogeneous Three-Way Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 691-714, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    2. Bocci, Laura & Vicari, Donatella & Vichi, Maurizio, 2006. "A mixture model for the classification of three-way proximity data," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1625-1654, April.
    3. Laura Bocci & Maurizio Vichi, 2011. "The K-INDSCAL Model for Heterogeneous Three-Way Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 691-714, October.
    4. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    5. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    6. Paolo Giordani & Henk Kiers, 2012. "FINDCLUS: Fuzzy INdividual Differences CLUStering," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 170-198, July.
    7. Dawn Iacobucci & Doug Grisaffe & Wayne DeSarbo, 2017. "Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(3), pages 81-98, December.
    8. Stephen L. France & Wen Chen & Yumin Deng, 2017. "ADCLUS and INDCLUS: analysis, experimentation, and meta-heuristic algorithm extensions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 371-393, June.
    9. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    10. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    11. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    12. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    13. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    14. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    15. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    16. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    17. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    18. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    19. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    20. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-016-9526-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.