IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v27y2009i7p533-545.html
   My bibliography  Save this article

Calibration Methods Used in Cancer Simulation Models and Suggested Reporting Guidelines

Author

Listed:
  • Natasha Stout
  • Amy Knudsen
  • Chung Kong
  • Pamela McMahon
  • G. Gazelle

Abstract

Increasingly, computer simulation models are used for economic and policy evaluation in cancer prevention and control. A model’s predictions of key outcomes, such as screening effectiveness, depend on the values of unobservable natural history parameters. Calibration is the process of determining the values of unobservable parameters by constraining model output to replicate observed data. Because there are many approaches for model calibration and little consensus on best practices, we surveyed the literature to catalogue the use and reporting of these methods in cancer simulation models. We conducted a MEDLINE search (1980 through 2006) for articles on cancer-screening models and supplemented search results with articles from our personal reference databases. For each article, two authors independently abstracted pre-determined items using a standard form. Data items included cancer site, model type, methods used for determination of unobservable parameter values and description of any calibration protocol. All authors reached consensus on items of disagreement. Reviews and non-cancer models were excluded. Articles describing analytical models, which estimate parameters with statistical approaches (e.g. maximum likelihood) were catalogued separately.Models that included unobservable parameters were analysed and classified by whether calibration methods were reported and if so, the methods used. The review process yielded 154 articles that met our inclusion criteria and, of these, we concluded that 131 may have used calibration methods to determine model parameters. Although the term ‘calibration’ was not always used, descriptions of calibration or ‘model fitting’ were found in 50% (n=66) of the articles, with an additional 16% (n=21) providing a reference to methods. Calibration target data were identified in nearly all of these articles. Other methodological details, such as the goodness-of-fit metric, were discussed in 54% (n=47 of 87) of the articles reporting calibration methods, while few details were provided on the algorithms used to search the parameter space. Our review shows that the use of cancer simulation modelling is increasing, although thorough descriptions of calibration procedures are rare in the published literature for these models. Calibration is a key component of model development and is central to the validity and credibility of subsequent analyses and inferences drawn from model predictions. To aid peer-review and facilitate discussion of modelling methods, we propose a standardized Calibration Reporting Checklist for model documentation. Copyright Adis Data Information BV 2009

Suggested Citation

  • Natasha Stout & Amy Knudsen & Chung Kong & Pamela McMahon & G. Gazelle, 2009. "Calibration Methods Used in Cancer Simulation Models and Suggested Reporting Guidelines," PharmacoEconomics, Springer, vol. 27(7), pages 533-545, July.
  • Handle: RePEc:spr:pharme:v:27:y:2009:i:7:p:533-545
    DOI: 10.2165/11314830-000000000-00000
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2165/11314830-000000000-00000
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.2165/11314830-000000000-00000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skates S. J & Pauler D. K & Jacobs I. J, 2001. "Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 429-439, June.
    2. L. Ingber & B. Rosen, 1992. "Genetic algorithms and very fast simulated reannealing: A comparison," Lester Ingber Papers 92ga, Lester Ingber.
    3. Yu Shen & Xuelin Huang, 2005. "Nonparametric Estimation of Asymptomatic Duration from a Randomized Prospective Cancer Screening Trial," Biometrics, The International Biometric Society, vol. 61(4), pages 992-999, December.
    4. Habbema, J. D. F. & Lubbe, J. Th. N. & van Oortmarssen, G. J. & van der Maas, P. J., 1987. "A simulation approach to cost-effectiveness and cost-benefit calculations of screening for the early detection of disease," European Journal of Operational Research, Elsevier, vol. 29(2), pages 159-166, May.
    5. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    6. Koopmanschap, Marc A. & Lubbe, Koos Th. N. & van Oortmarssen, Gerrit J. & van Agt, Heleen M. A. & van Ballegooijen, Marjolein & Habbema, J. Dik F., 1990. "Economic aspects of cervical cancer screening," Social Science & Medicine, Elsevier, vol. 30(10), pages 1081-1087, January.
    7. Gyrd-Hansen, Dorte & Holund, Berit & Andersen, Per, 1995. "A cost-effectiveness analysis of cervical cancer screening: health policy implications," Health Policy, Elsevier, vol. 34(1), pages 35-51, October.
    8. Szeto, Kam Leong & Devlin, Nancy J., 1996. "The cost-effectiveness of mammography screening: evidence from a microsimulation model for New Zealand," Health Policy, Elsevier, vol. 38(2), pages 101-115, November.
    9. Rose Baker, 1998. "Use of a mathematical model to evaluate breast cancer screening policy," Health Care Management Science, Springer, vol. 1(2), pages 103-113, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    2. Tazio Vanni & Jonathan Karnon & Jason Madan & Richard White & W. Edmunds & Anna Foss & Rosa Legood, 2011. "Calibrating Models in Economic Evaluation," PharmacoEconomics, Springer, vol. 29(1), pages 35-49, January.
    3. Matthew R Behrend & María-Gloria Basáñez & Jonathan I D Hamley & Travis C Porco & Wilma A Stolk & Martin Walker & Sake J de Vlas & for the NTD Modelling Consortium, 2020. "Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(4), pages 1-17, April.
    4. C Marijn Hazelbag & Jonathan Dushoff & Emanuel M Dominic & Zinhle E Mthombothi & Wim Delva, 2020. "Calibration of individual-based models to epidemiological data: A systematic review," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-17, May.
    5. Douglas Taylor & Vivek Pawar & Denise Kruzikas & Kristen Gilmore & Myrlene Sanon & Milton Weinstein, 2012. "Incorporating Calibrated Model Parameters into Sensitivity Analyses," PharmacoEconomics, Springer, vol. 30(2), pages 119-126, February.
    6. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.
    7. Penny R. Breeze & Hazel Squires & Kate Ennis & Petra Meier & Kate Hayes & Nik Lomax & Alan Shiell & Frank Kee & Frank de Vocht & Martin O’Flaherty & Nigel Gilbert & Robin Purshouse & Stewart Robinson , 2023. "Guidance on the use of complex systems models for economic evaluations of public health interventions," Health Economics, John Wiley & Sons, Ltd., vol. 32(7), pages 1603-1625, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorte Gyrd‐Hansen & Jes Søgaard, 2001. "Analysing public preferences for cancer screening programmes," Health Economics, John Wiley & Sons, Ltd., vol. 10(7), pages 617-634, October.
    2. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    3. Bech, Mickael & Gyrd-Hansen, Dorte, 2000. "Cost implications of routine mammography screening of women 50-69 years in the County of Funen, Denmark," Health Policy, Elsevier, vol. 54(2), pages 125-141, November.
    4. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    5. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2020. "Neural Networks Applied to Microsimulation: A Prediction Model for Pedestrian Crossing Time," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    6. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    7. Anurag Agarwal, 2009. "Theoretical insights into the augmented-neural-network approach for combinatorial optimization," Annals of Operations Research, Springer, vol. 168(1), pages 101-117, April.
    8. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Marti, Rafael, 1998. "A tabu search algorithm for the bipartite drawing problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 558-569, April.
    10. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    11. Nha Vo‐Thanh & Hans‐Peter Piepho, 2023. "Generating designs for comparative experiments with two blocking factors," Biometrics, The International Biometric Society, vol. 79(4), pages 3574-3585, December.
    12. Сластников С.А., 2014. "Применение Метаэвристических Алгоритмов Для Задачи Маршрутизации Транспорта," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 117-126, январь.
    13. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    14. Grolimund, Stephan & Ganascia, Jean-Gabriel, 1997. "Driving Tabu Search with case-based reasoning," European Journal of Operational Research, Elsevier, vol. 103(2), pages 326-338, December.
    15. repec:dar:wpaper:62383 is not listed on IDEAS
    16. Minghe Sun, 2007. "A Primogenitary Linked Quad Tree Approach for Solution Storage and Retrieval in Heuristic Binary Optimization," Working Papers 0009, College of Business, University of Texas at San Antonio.
    17. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    18. Bergey, Paul K. & Ragsdale, Cliff, 2005. "Modified differential evolution: a greedy random strategy for genetic recombination," Omega, Elsevier, vol. 33(3), pages 255-265, June.
    19. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    20. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    21. Christian Kronborg & Mikkel Vass & Jørgen Lauridsen & Kirsten Avlund, 2006. "Cost effectiveness of preventive home visits to the elderly," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 7(4), pages 238-246, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:27:y:2009:i:7:p:533-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.