IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v44y2022i4d10.1007_s00291-022-00686-9.html
   My bibliography  Save this article

Inventory management with advance demand information and flexible shipment consolidation

Author

Listed:
  • Jana Ralfs

    (TUM School of Management, Technical University of Munich, TUM Campus Heilbronn)

  • Gudrun P. Kiesmüller

    (TUM School of Management, Technical University of Munich, TUM Campus Heilbronn)

Abstract

In this paper, we study a stochastic single-item, single-stage inventory system, in which orders from several production facilities are placed at one warehouse. An (R, Q) policy is applied to control the inventory at the warehouse, and orders arrive according to a Poisson process and include a due date such that some information about future demand is available. This advance demand information (ADI) can be used to adapt a time-based shipment consolidation policy applied to replenish stock at the production facilities. We develop a model to incorporate flexible deliveries, indicating that orders can be shipped before their due date if sufficient reserved transportation capacity is available. We derive analytical, approximate expressions for the expected inventory and shipment costs and therefore enable the evaluation of different inventory and shipment policies including outbound transportation capacities. We additionally show how to compute the optimal policy parameters and conduct a detailed numerical study. Our computational experiments indicate that our approximation works extremely well, with an average total cost deviation of 0.20%, and finds optimal policy parameters in more than 90% of our instances. In line with existing research, we can show that ADI leads to large cost reductions. However, the main cause of the cost reduction is the flexible delivery option. To be able to completely utilize this option, even larger safety stocks are obtained compared to systems without ADI, but savings due to a more efficient transportation policy far exceed the cost increase due to higher safety stocks.

Suggested Citation

  • Jana Ralfs & Gudrun P. Kiesmüller, 2022. "Inventory management with advance demand information and flexible shipment consolidation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1009-1044, December.
  • Handle: RePEc:spr:orspec:v:44:y:2022:i:4:d:10.1007_s00291-022-00686-9
    DOI: 10.1007/s00291-022-00686-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-022-00686-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-022-00686-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taher Ahmadi & Zümbül Atan & Ton Kok & Ivo Adan, 2020. "Time-based service constraints for inventory systems with commitment lead time," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 355-395, June.
    2. Howard, Christian & Marklund, Johan, 2011. "Evaluation of stock allocation policies in a divergent inventory system with shipment consolidation," European Journal of Operational Research, Elsevier, vol. 211(2), pages 298-309, June.
    3. Tan, Tarkan & Gullu, Refik & Erkip, Nesim, 2007. "Modelling imperfect advance demand information and analysis of optimal inventory policies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 897-923, March.
    4. Özalp Özer, 2003. "Replenishment Strategies for Distribution Systems Under Advance Demand Information," Management Science, INFORMS, vol. 49(3), pages 255-272, March.
    5. Bourland, Karla E. & Powell, Stephen G. & Pyke, David F., 1996. "Exploiting timely demand information to reduce inventories," European Journal of Operational Research, Elsevier, vol. 92(2), pages 239-253, July.
    6. Johan Marklund, 2011. "Inventory control in divergent supply chains with time‐based dispatching and shipment consolidation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 59-71, February.
    7. Özalp Özer & Wei Wei, 2004. "Inventory Control with Limited Capacity and Advance Demand Information," Operations Research, INFORMS, vol. 52(6), pages 988-1000, December.
    8. Dellaert, N. P. & Melo, M. T., 2003. "Approximate solutions for a stochastic lot-sizing problem with partial customer-order information," European Journal of Operational Research, Elsevier, vol. 150(1), pages 163-180, October.
    9. Fangruo Chen, 2001. "Market Segmentation, Advanced Demand Information, and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 3(1), pages 53-67, February.
    10. Tor Schoenmeyr & Stephen C. Graves, 2009. "Strategic Safety Stocks in Supply Chains with Evolving Forecasts," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 657-673, March.
    11. L. Beril Toktay & Lawrence M. Wein, 2001. "Analysis of a Forecasting-Production-Inventory System with Stationary Demand," Management Science, INFORMS, vol. 47(9), pages 1268-1281, September.
    12. Stenius, Olof & Marklund, Johan & Axsäter, Sven, 2018. "Sustainable multi-echelon inventory control with shipment consolidation and volume dependent freight costs," European Journal of Operational Research, Elsevier, vol. 267(3), pages 904-916.
    13. Frank Chen & Tong Wang & Tommy Xu, 2005. "Integrated Inventory Replenishment and Temporal Shipment Consolidation: A Comparison of Quantity-Based and Time-Based Models," Annals of Operations Research, Springer, vol. 135(1), pages 197-210, March.
    14. J. A. Buzacott & J. G. Shanthikumar, 1994. "Safety Stock versus Safety Time in MRP Controlled Production Systems," Management Science, INFORMS, vol. 40(12), pages 1678-1689, December.
    15. Rema Hariharan & Paul Zipkin, 1995. "Customer-Order Information, Leadtimes, and Inventories," Management Science, INFORMS, vol. 41(10), pages 1599-1607, October.
    16. Taher Ahmadi & Zümbül Atan & Ton de Kok & Ivo Adan, 2019. "Optimal control policies for an inventory system with commitment lead time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(3), pages 193-212, April.
    17. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    18. Yingdong Lu & Jing-Sheng Song & David D. Yao, 2003. "Order Fill Rate, Leadtime Variability, and Advance Demand Information in an Assemble-to-Order System," Operations Research, INFORMS, vol. 51(2), pages 292-308, April.
    19. Johan Marklund, 2006. "Controlling Inventories in Divergent Supply Chains with Advance-Order Information," Operations Research, INFORMS, vol. 54(5), pages 988-1010, October.
    20. James K. Higginson & James H. Bookbinder, 1995. "Markovian Decision Processes in Shipment Consolidation," Transportation Science, INFORMS, vol. 29(3), pages 242-255, August.
    21. DeCroix, Gregory A. & Mookerjee, Vijay S., 1997. "Purchasing demand information in a stochastic-demand inventory system," European Journal of Operational Research, Elsevier, vol. 102(1), pages 36-57, October.
    22. Cetinkaya, Sila & Mutlu, Fatih & Lee, Chung-Yee, 2006. "A comparison of outbound dispatch policies for integrated inventory and transportation decisions," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1094-1112, June.
    23. Ülkü, M. Ali & Bookbinder, James H., 2012. "Optimal quoting of delivery time by a third party logistics provider: The impact of shipment consolidation and temporal pricing schemes," European Journal of Operational Research, Elsevier, vol. 221(1), pages 110-117.
    24. Fikri Karaesmen & George Liberopoulos & Yves Dallery, 2004. "The Value of Advance Demand Information in Production/Inventory Systems," Annals of Operations Research, Springer, vol. 126(1), pages 135-157, February.
    25. Taher Ahmadi & Zumbul Atan & Ton de Kok & Ivo Adan, 2019. "Optimal control policies for assemble-to-order systems with commitment lead time," IISE Transactions, Taylor & Francis Journals, vol. 51(12), pages 1365-1382, December.
    26. Sila Çetinkaya & Chung-Yee Lee, 2000. "Stock Replenishment and Shipment Scheduling for Vendor-Managed Inventory Systems," Management Science, INFORMS, vol. 46(2), pages 217-232, February.
    27. Du, Bisheng & Larsen, Christian, 2017. "Reservation policies of advance orders in the presence of multiple demand classes," European Journal of Operational Research, Elsevier, vol. 256(2), pages 430-438.
    28. Thonemann, U. W., 2002. "Improving supply-chain performance by sharing advance demand information," European Journal of Operational Research, Elsevier, vol. 142(1), pages 81-107, October.
    29. Guillermo Gallego & Özalp Özer, 2003. "Optimal Replenishment Policies for Multiechelon Inventory Problems Under Advance Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 157-175, February.
    30. Felix Papier, 2016. "Supply Allocation Under Sequential Advance Demand Information," Operations Research, INFORMS, vol. 64(2), pages 341-361, April.
    31. Stephen C. Graves & David B. Kletter & William B. Hetzel, 1998. "A Dynamic Model for Requirements Planning with Application to Supply Chain Optimization," Operations Research, INFORMS, vol. 46(3-supplem), pages 35-49, June.
    32. M. Ali Ülkü & James H. Bookbinder, 2012. "Modelling shipment consolidation and pricing decisions for a manufacturer-distributor," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 6(1/2), pages 62-76.
    33. Fernando Bernstein & Gregory A. DeCroix, 2015. "Advance Demand Information in a Multiproduct System," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 52-65, February.
    34. Olof Stenius & Ayşe Gönül Karaarslan & Johan Marklund & A. G. de Kok, 2016. "Exact Analysis of Divergent Inventory Systems with Time-Based Shipment Consolidation and Compound Poisson Demand," Operations Research, INFORMS, vol. 64(4), pages 906-921, August.
    35. Liberopoulos, George, 2008. "On the tradeoff between optimal order-base-stock levels and demand lead-times," European Journal of Operational Research, Elsevier, vol. 190(1), pages 136-155, October.
    36. Tan, Tarkan & Güllü, Refik & Erkip, Nesim, 2009. "Using imperfect advance demand information in ordering and rationing decisions," International Journal of Production Economics, Elsevier, vol. 121(2), pages 665-677, October.
    37. Alexandar Angelus & Özalp Özer, 2016. "Knowledge You Can Act on: Optimal Policies for Assembly Systems with Expediting and Advance Demand Information," Operations Research, INFORMS, vol. 64(6), pages 1338-1371, December.
    38. Engin Topan & Tarkan Tan & Geert-Jan van Houtum & Rommert Dekker, 2018. "Using imperfect advance demand information in lost-sales inventory systems with the option of returning inventory," IISE Transactions, Taylor & Francis Journals, vol. 50(3), pages 246-264, March.
    39. Tong Wang & Beril L. Toktay, 2008. "Inventory Management with Advance Demand Information and Flexible Delivery," Management Science, INFORMS, vol. 54(4), pages 716-732, April.
    40. Çetinkaya, SIla & Bookbinder, James H., 2003. "Stochastic models for the dispatch of consolidated shipments," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 747-768, September.
    41. Johansson, Lina & Sonntag, Danja R. & Marklund, Johan & Kiesmüller, Gudrun P., 2020. "Controlling distribution inventory systems with shipment consolidation and compound Poisson demand," European Journal of Operational Research, Elsevier, vol. 280(1), pages 90-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liberopoulos, George, 2008. "On the tradeoff between optimal order-base-stock levels and demand lead-times," European Journal of Operational Research, Elsevier, vol. 190(1), pages 136-155, October.
    2. Tong Wang & Beril L. Toktay, 2008. "Inventory Management with Advance Demand Information and Flexible Delivery," Management Science, INFORMS, vol. 54(4), pages 716-732, April.
    3. Taher Ahmadi & Zümbül Atan & Ton de Kok & Ivo Adan, 2019. "Optimal control policies for an inventory system with commitment lead time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(3), pages 193-212, April.
    4. Alım, Muzaffer & Beullens, Patrick, 2022. "Improving inventory system performance by selective purchasing of buyers’ willingness to wait," European Journal of Operational Research, Elsevier, vol. 300(1), pages 124-136.
    5. Christoph Rippe & Gudrun P. Kiesmüller, 2023. "The added value of advance demand information for the planning of a repair kit," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 311-335, March.
    6. Sonntag, Danja R. & Schrotenboer, Albert H. & Kiesmüller, Gudrun P., 2023. "Stochastic inventory routing with time-based shipment consolidation," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1186-1201.
    7. Fernando Bernstein & Gregory A. DeCroix, 2015. "Advance Demand Information in a Multiproduct System," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 52-65, February.
    8. Kaijie Zhu & Ulrich W. Thonemann, 2004. "Modeling the Benefits of Sharing Future Demand Information," Operations Research, INFORMS, vol. 52(1), pages 136-147, February.
    9. Rippe, Christoph & Kiesmüller, Gudrun P., 2023. "The repair kit problem with imperfect advance demand information," European Journal of Operational Research, Elsevier, vol. 304(2), pages 558-576.
    10. Andersson, Jonas & Malmberg, Filip & Marklund, Johan, 2023. "Exact analysis of One-Warehouse-Multiple-Retailer inventory systems with quantity restricted deliveries," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1161-1172.
    11. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    12. Iida, Tetsuo, 2015. "Benefits of leadtime information and of its combination with demand forecast information," International Journal of Production Economics, Elsevier, vol. 163(C), pages 146-156.
    13. Alexandar Angelus & Özalp Özer, 2016. "Knowledge You Can Act on: Optimal Policies for Assembly Systems with Expediting and Advance Demand Information," Operations Research, INFORMS, vol. 64(6), pages 1338-1371, December.
    14. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Stenius, Olof & Marklund, Johan & Axsäter, Sven, 2018. "Sustainable multi-echelon inventory control with shipment consolidation and volume dependent freight costs," European Journal of Operational Research, Elsevier, vol. 267(3), pages 904-916.
    16. Oguzhan Vicil, 2021. "Optimizing stock levels for service-differentiated demand classes with inventory rationing and demand lead times," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 381-424, June.
    17. Chen, Jing & Dong, Ming & Xu, Lei, 2018. "A perishable product shipment consolidation model considering freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 56-86.
    18. Wei, Bo & Çetinkaya, Sıla & Cline, Daren B.H., 2023. "Inbound replenishment and outbound dispatch decisions under hybrid shipment consolidation policies: An analytical model and comparison," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    19. Taher Ahmadi & Zümbül Atan & Ton Kok & Ivo Adan, 2020. "Time-based service constraints for inventory systems with commitment lead time," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 355-395, June.
    20. Du, Bisheng & Larsen, Christian, 2017. "Reservation policies of advance orders in the presence of multiple demand classes," European Journal of Operational Research, Elsevier, vol. 256(2), pages 430-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:44:y:2022:i:4:d:10.1007_s00291-022-00686-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.