IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v39y2017i2d10.1007_s00291-016-0462-y.html
   My bibliography  Save this article

Omega-CVaR portfolio optimization and its worst case analysis

Author

Listed:
  • Amita Sharma

    (Indian Institute of Technology Delhi)

  • Sebastian Utz

    (University of Regensburg)

  • Aparna Mehra

    (Indian Institute of Technology Delhi)

Abstract

This paper presents a novel framework for optimizing portfolios using distribution dependent thresholds in Omega ratio to control the downside risk. Portfolios resulting from the maximization of the classical Omega ratio simultaneously maximize the probability of superior performance compared to a threshold point set by an investor and minimize the probability of a worse performance compared to the same threshold. However, there is no mandatory rule or mechanism to choose this threshold point in the Omega ratio optimization model yet. In this paper, we redefine the Omega ratio for a loss averse investor by taking the distribution dependent threshold point as the conditional value-at-risk at an $$\alpha $$ α confidence level ( $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α ) of the benchmark market. The $$\alpha $$ α -value reflects the attitude of an investor towards losses. We then embed this new Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model in a robust portfolio optimization framework and present its worst case analysis under three uncertainty sets. The robustness is introduced both in the Omega measure and the $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α measure. We show that the worst case Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α robust optimization models are linear programs for mixed and box uncertainty sets and a second order cone program under ellipsoidal sets, and hence tractable in all three cases. We conduct a comprehensive empirical investigation of the classical $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model, the STARR $$_{\alpha }$$ α model, the Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model, and robust Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model under a mixed uncertainty set for listed stocks of the S&P 500. The optimal portfolios resulting from the Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model exhibit a superior performance compared to the classical $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model in the sense of higher expected returns, Sharpe ratios, modified Sharpe ratios, and lesser losses in terms of $${\mathrm{VaR}_{\alpha }}$$ VaR α and $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α values. The robust Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model under mixed uncertainty set is shown to dominate the Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model in terms of all performance measures. Furthermore, both the Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α and robust Omega- $$ {\mathrm{CVaR}_{\alpha }}$$ CVaR α model under a mixed uncertainty set yield significantly lower risk compared to STARR $$_{\alpha }$$ α model in terms of $$\mathrm{CVaR}_{\alpha }$$ CVaR α and variance values.

Suggested Citation

  • Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
  • Handle: RePEc:spr:orspec:v:39:y:2017:i:2:d:10.1007_s00291-016-0462-y
    DOI: 10.1007/s00291-016-0462-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-016-0462-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-016-0462-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas J. Linsmeier & Neil D. Pearson, 1996. "Risk Measurement: An Introduction to Value at Risk," Finance 9609004, University Library of Munich, Germany.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Vékás, Péter, 2015. "An asymptotic test for the Conditional Value-at-Risk," Corvinus Economics Working Papers (CEWP) 2015/19, Corvinus University of Budapest.
    4. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    7. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    8. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    9. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    10. Svetlozar Rachev & Sergio Ortobelli & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2008. "Desirable Properties Of An Ideal Risk Measure In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 19-54.
    11. Kapsos, Michalis & Christofides, Nicos & Rustem, Berç, 2014. "Worst-case robust Omega ratio," European Journal of Operational Research, Elsevier, vol. 234(2), pages 499-507.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Hany A. Shawky & David M. Smith, 2005. "Optimal Number of Stock Holdings in Mutual Fund Portfolios Based on Market Performance," The Financial Review, Eastern Finance Association, vol. 40(4), pages 481-495, November.
    14. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    15. S. V. Stoyanov & S. T. Rachev & F. J. Fabozzi, 2007. "Optimal Financial Portfolios," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 401-436.
    16. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    17. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    18. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    19. Linsmeier, Thomas J. & Pearson, Neil D., 1996. "Risk measurement: an introduction to value at risk," ACE Reports 14796, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    20. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    21. Guastaroba, G. & Mansini, R. & Ogryczak, W. & Speranza, M.G., 2016. "Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem," European Journal of Operational Research, Elsevier, vol. 251(3), pages 938-956.
    22. Manfred GILLI & Enrico SCHUMANN & Giacomo DI TOLLO & Gerda CABEJ, 2008. "Constructing Long/Short Portfolios with the Omega ratio," Swiss Finance Institute Research Paper Series 08-34, Swiss Finance Institute.
    23. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    3. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    4. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    5. Mirza Sikalo & Almira Arnaut-Berilo & Azra Zaimovic, 2022. "Efficient Asset Allocation: Application of Game Theory-Based Model for Superior Performance," IJFS, MDPI, vol. 10(1), pages 1-15, March.
    6. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    7. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    8. Arab, Idir & Lando, Tommaso & Oliveira, Paulo Eduardo, 2022. "Comparison of Lp-quantiles and related skewness measures," Statistics & Probability Letters, Elsevier, vol. 183(C).
    9. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    10. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    11. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    2. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    3. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    4. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    5. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    6. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    7. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    8. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    9. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    10. Wlodzimierz Ogryczak & Michał Przyłuski & Tomasz Śliwiński, 2017. "Efficient optimization of the reward-risk ratio with polyhedral risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 625-653, December.
    11. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    12. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    13. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
    14. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    15. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    16. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    17. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    18. Gotoh, Jun-ya & Takeda, Akiko, 2012. "Minimizing loss probability bounds for portfolio selection," European Journal of Operational Research, Elsevier, vol. 217(2), pages 371-380.
    19. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    20. Wei Liu & Li Yang & Bo Yu, 2022. "Kernel density estimation based distributionally robust mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 1053-1077, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:39:y:2017:i:2:d:10.1007_s00291-016-0462-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.