IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v20y2020i4d10.1007_s12351-018-0410-5.html
   My bibliography  Save this article

Formulating the integrated forest harvest-scheduling model to reduce the cost of the road-networks

Author

Listed:
  • Nader Naderializadeh

    (Lakehead University)

  • Kevin A. Crowe

    (Lakehead University)

Abstract

The integrated harvest-scheduling model addresses the tactical forest management planning problem of maximizing harvest revenues minus road construction and transportation costs. This paper considers the problem of developing innovations to this model such that it can: (1) be used to generate solutions to problem instances containing a large set of candidate roads, with many circuits; (2) yield improved solutions when compared to prior formulations; and (3) achieve improvements in the solutions by reducing the total construction and transportation costs. To the end, a new formulation of the integrated model was developed using the following strategy: (a) each candidate road was represented in the model by two directed arcs (instead of one undirected edge, as used in prior formulations); and (b) a set of strengthening constraints including clique constraint was developed to exploit the property of the directness of the candidate roads. The new model was tested and compared with prior formulations on eight problem instances, ranging in size from 900 to 4900 stands and containing candidate roads ranging in number from 3424 to 19,184. Results show that the new formulation: (1) entails the use of larger set of constraints than prior formulations; (2) produced tighter root-LP gaps, than prior models, as the problem instances grew in size and complexity; and (3) produced solutions with the tightest relative gap, the highest objective function value, and major reductions in the cost of constructing a road network, as the problem instances grew in size and complexity. Our conclusion is that the strategy of formulating the integrated model, used in this paper, may be useful to future researchers and practitioners working on this problem.

Suggested Citation

  • Nader Naderializadeh & Kevin A. Crowe, 2020. "Formulating the integrated forest harvest-scheduling model to reduce the cost of the road-networks," Operational Research, Springer, vol. 20(4), pages 2283-2306, December.
  • Handle: RePEc:spr:operea:v:20:y:2020:i:4:d:10.1007_s12351-018-0410-5
    DOI: 10.1007/s12351-018-0410-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-018-0410-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-018-0410-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    2. Fernando Veliz & Jean-Paul Watson & Andres Weintraub & Roger Wets & David Woodruff, 2015. "Stochastic optimization models in forest planning: a progressive hedging solution approach," Annals of Operations Research, Springer, vol. 232(1), pages 259-274, September.
    3. Carlsson, Dick & Ronnqvist, Mikael, 2005. "Supply chain management in forestry--case studies at Sodra Cell AB," European Journal of Operational Research, Elsevier, vol. 163(3), pages 589-616, June.
    4. Arabatzis, Garyfallos & Petridis, Konstantinos & Galatsidas, Spyros & Ioannou, Konstantinos, 2013. "A demand scenario based fuelwood supply chain: A conceptual model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 687-697.
    5. Guignard, Monique & Ryu, Choonho & Spielberg, Kurt, 1998. "Model tightening for integrated timber harvest and transportation planning," European Journal of Operational Research, Elsevier, vol. 111(3), pages 448-460, December.
    6. Andres Weintraub & Daniel Navon, 1976. "A Forest Management Planning Model Integrating Silvicultural and Transportation Activities," Management Science, INFORMS, vol. 22(12), pages 1299-1309, August.
    7. Andrés Weintraub & Greg Jones & Adrian Magendzo & Mary Meacham & Malcolm Kirby, 1994. "A Heuristic System to Solve Mixed Integér Forest Planning Models," Operations Research, INFORMS, vol. 42(6), pages 1010-1024, December.
    8. Nicolas Andalaft & Pablo Andalaft & Monique Guignard & Adrian Magendzo & Alexis Wainer & Andres Weintraub, 2003. "A Problem of Forest Harvesting and Road Building Solved Through Model Strengthening and Lagrangean Relaxation," Operations Research, INFORMS, vol. 51(4), pages 613-628, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nader Naderializadeh & Kevin A. Crowe & Melika Rouhafza, 2022. "Solving the integrated forest harvest scheduling model using metaheuristic algorithms," Operational Research, Springer, vol. 22(3), pages 2437-2463, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    2. Nader Naderializadeh & Kevin A. Crowe & Melika Rouhafza, 2022. "Solving the integrated forest harvest scheduling model using metaheuristic algorithms," Operational Research, Springer, vol. 22(3), pages 2437-2463, July.
    3. Andres Weintraub P., 2007. "Integer programming in forestry," Annals of Operations Research, Springer, vol. 149(1), pages 209-216, February.
    4. Nicolas Andalaft & Pablo Andalaft & Monique Guignard & Adrian Magendzo & Alexis Wainer & Andres Weintraub, 2003. "A Problem of Forest Harvesting and Road Building Solved Through Model Strengthening and Lagrangean Relaxation," Operations Research, INFORMS, vol. 51(4), pages 613-628, August.
    5. Fernando Veliz & Jean-Paul Watson & Andres Weintraub & Roger Wets & David Woodruff, 2015. "Stochastic optimization models in forest planning: a progressive hedging solution approach," Annals of Operations Research, Springer, vol. 232(1), pages 259-274, September.
    6. Monique Guignard, 2003. "Lagrangean relaxation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 151-200, December.
    7. Jiehong Kong & Mikael Rönnqvist & Mikael Frisk, 2015. "Using mixed integer programming models to synchronously determine production levels and market prices in an integrated market for roundwood and forest biomass," Annals of Operations Research, Springer, vol. 232(1), pages 179-199, September.
    8. Mikael Rönnqvist & Sophie D’Amours & Andres Weintraub & Alejandro Jofre & Eldon Gunn & Robert Haight & David Martell & Alan Murray & Carlos Romero, 2015. "Operations Research challenges in forestry: 33 open problems," Annals of Operations Research, Springer, vol. 232(1), pages 11-40, September.
    9. Konstantinos Petridis & Garyfallos Arabatzis & Angelo Sifaleras, 2020. "Mathematical optimization models for fuelwood production," Annals of Operations Research, Springer, vol. 294(1), pages 59-74, November.
    10. Quadrifoglio, Luca & Dessouky, Maged M. & Ordonez, Fernando, 2008. "Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints," European Journal of Operational Research, Elsevier, vol. 185(2), pages 481-494, March.
    11. Antonio Alonso-Ayuso & Laureano Escudero & Monique Guignard & Martín Quinteros & Andres Weintraub, 2011. "Forestry management under uncertainty," Annals of Operations Research, Springer, vol. 190(1), pages 17-39, October.
    12. Marta Mesquita & Susete Marques & Marlene Marques & Marco Marto & Miguel Constantino & José G. Borges, 2022. "An optimization approach to design forest road networks and plan timber transportation," Operational Research, Springer, vol. 22(3), pages 2973-3001, July.
    13. Olsson, Leif & Lohmander, Peter, 2005. "Optimal forest transportation with respect to road investments," Forest Policy and Economics, Elsevier, vol. 7(3), pages 369-379, March.
    14. Kai L. Ross & Sándor F. Tóth & Weikko S. Jaross, 2018. "Forest Harvest Scheduling with Endogenous Road Costs," Interfaces, INFORMS, vol. 48(3), pages 260-270, June.
    15. Petersen, E. R. & Taylor, A. J., 2001. "An investment planning model for a new North-Central railway in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 847-862, November.
    16. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    17. Sinha, Ankur & Rämö, Janne & Malo, Pekka & Kallio, Markku & Tahvonen, Olli, 2017. "Optimal management of naturally regenerating uneven-aged forests," European Journal of Operational Research, Elsevier, vol. 256(3), pages 886-900.
    18. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    19. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    20. Melkote, Sanjay & Daskin, Mark S., 2001. "Capacitated facility location/network design problems," European Journal of Operational Research, Elsevier, vol. 129(3), pages 481-495, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:20:y:2020:i:4:d:10.1007_s12351-018-0410-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.