IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v98y2019i1d10.1007_s11069-019-03612-5.html
   My bibliography  Save this article

Hazardous weather events in the St Lawrence Valley from the French regime to Confederation: descriptive weather in historical records from Quebec City and Montreal, 1742–1869 and 1953—present

Author

Listed:
  • Victoria C. Slonosky

    (ACRE-Canada
    Geothink Consortium, McGill University
    McGill University)

Abstract

Daily weather records for the St Lawrence Valley region in Québec, Canada, exist on a continuous basis for nearly two centuries and on a more fragmentary level back to the French regime. Daily and sub-daily observations allow for the potential to reconstruct and analyse not only hazardous weather events of short duration but also high impact events such as freezing rain, snowstorms, blowing snow or thunder. Weather records can also give us a more detailed understanding of longer lasting events, such as consecutive dry days leading to drought, or long winters with consecutive frost days which have an impact on health and the demand for domestic heat, which can itself lead to hazardous conditions for air quality. Dry summers, severe snowstorms and long winters have always occurred in the St Lawrence Valley region. This paper looks at the frequency and evolution of a subset of weather events which constitute natural hazards over a period of centuries, from 1742 to the present day, with gaps from 1754–1798 and 1870–1953. The annual frequencies of most events fall broadly within the same ranges over the course of the past centuries. However, a decrease in the number of consecutive dry days and a concomitant increase in precipitation-related hazardous events, such as thunder and freezing rain, can be seen in the twentieth and early twenty-first centuries compared to the nineteenth century. The mid-eighteenth century also saw a high frequency of freezing rain events. A mid-twentieth century peak in the number of days with smoke also stands out and is related to industrial and domestic sources of heating and energy.

Suggested Citation

  • Victoria C. Slonosky, 2019. "Hazardous weather events in the St Lawrence Valley from the French regime to Confederation: descriptive weather in historical records from Quebec City and Montreal, 1742–1869 and 1953—present," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 51-77, August.
  • Handle: RePEc:spr:nathaz:v:98:y:2019:i:1:d:10.1007_s11069-019-03612-5
    DOI: 10.1007/s11069-019-03612-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03612-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03612-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean Andrey & Brian Mills & Mike Leahy & Jeff Suggett, 2003. "Weather as a Chronic Hazard for Road Transportation in Canadian Cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 319-343, March.
    2. Adam Smith & Richard Katz, 2013. "US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 387-410, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Bursa & Markus Mailer & Kay W. Axhausen, 2022. "Intra-destination travel behavior of alpine tourists: a literature review on choice determinants and the survey work," Transportation, Springer, vol. 49(5), pages 1465-1516, October.
    2. Jaroszweski, David & Chapman, Lee & Petts, Judith, 2010. "Assessing the potential impact of climate change on transportation: the need for an interdisciplinary approach," Journal of Transport Geography, Elsevier, vol. 18(2), pages 331-335.
    3. Hyunwoo Kang & Venkataramana Sridhar, 2018. "Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic Conditions," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    4. Jenni Dinger & Michael Conger & David Hekman & Carla Bustamante, 2020. "Somebody That I Used to Know: The Immediate and Long-Term Effects of Social Identity in Post-disaster Business Communities," Journal of Business Ethics, Springer, vol. 166(1), pages 115-141, September.
    5. Yajie Zou & Yue Zhang & Kai Cheng, 2021. "Exploring the Impact of Climate and Extreme Weather on Fatal Traffic Accidents," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    6. Islam, Mazharul & Alharthi, Majed & Alam, Md. Mahmudul, 2018. "The Impacts of Climate Change on Road Traffic Accidents in Saudi Arabia," OSF Preprints 2p5aj, Center for Open Science.
    7. Robert L. Ceres & Chris E. Forest & Klaus Keller, 2017. "Understanding the detectability of potential changes to the 100-year peak storm surge," Climatic Change, Springer, vol. 145(1), pages 221-235, November.
    8. Andrey, Jean & Hambly, Derrick & Mills, Brian & Afrin, Sadia, 2013. "Insights into driver adaptation to inclement weather in Canada," Journal of Transport Geography, Elsevier, vol. 28(C), pages 192-203.
    9. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    10. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    11. Hwang, Taesung & Chung, Koohong & Ragland, David & Chan, Chin-Yao, 2008. "Identification of High Collision Concentration Locations Under Wet Weather Conditions," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1xp3g5b4, Institute of Transportation Studies, UC Berkeley.
    12. Streeter, M. & Rhode-Barbarigos, L. & Adriaenssens, S., 2015. "Form finding and analysis of inflatable dams using dynamic relaxation," Applied Mathematics and Computation, Elsevier, vol. 267(C), pages 742-749.
    13. Dinan, Terry, 2017. "Projected Increases in Hurricane Damage in the United States: The Role of Climate Change and Coastal Development," Ecological Economics, Elsevier, vol. 138(C), pages 186-198.
    14. Reyes, Julian & Elias, Emile & Haacker, Erin & Kremen, Amy & Parker, Lauren & Rottler, Caitlin, 2020. "Assessing agricultural risk management using historic crop insurance loss data over the ogallala aquifer," Agricultural Water Management, Elsevier, vol. 232(C).
    15. Angus Eugene Retallack & Bertram Ostendorf, 2020. "Relationship Between Traffic Volume and Accident Frequency at Intersections," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    16. Qianqian Zhou & Jiongheng Su & Guoyong Leng & Jian Peng, 2019. "The Role of Hazard and Vulnerability in Modulating Economic Damages of Inland Floods in the United States Using a Survey-Based Dataset," Sustainability, MDPI, vol. 11(13), pages 1-12, July.
    17. Daniel Burow & Christopher Atkinson, 2019. "An examination of traffic volume during snow events in northeast Ohio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1179-1189, November.
    18. Joshua M. Pearce & Richard Parncutt, 2023. "Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy," Energies, MDPI, vol. 16(16), pages 1-20, August.
    19. Andrey, Jean, 2010. "Long-term trends in weather-related crash risks," Journal of Transport Geography, Elsevier, vol. 18(2), pages 247-258.
    20. Ahmadiani, Mona & Ferreira, Susana, 2021. "Well-being effects of extreme weather events in the United States," Resource and Energy Economics, Elsevier, vol. 64(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:98:y:2019:i:1:d:10.1007_s11069-019-03612-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.