IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v95y2019i3d10.1007_s11069-018-3511-9.html
   My bibliography  Save this article

Urban floods in Hyderabad, India, under present and future rainfall scenarios: a case study

Author

Listed:
  • Swathi Vemula

    (Birla Institute of Technology and Science)

  • K. Srinivasa Raju

    (Birla Institute of Technology and Science)

  • S. Sai Veena

    (Birla Institute of Technology and Science)

  • A. Santosh Kumar

    (Birla Institute of Technology and Science)

Abstract

This study assesses and evaluates the impacts of future extreme rainfall event(s) on conveyance capacity of urban Storm Water Network (SWN) of Hyderabad City, India, along with flood risk analysis and inundation mapping. The catchment runoff volume was simulated using Storm Water Management Model (SWMM). The runoff simulations were carried out for historic and future extreme rainfall event(s). Future rainfall events were simulated under climate change scenarios using Global Climate Model (GCM), GFDL-CM3 of Coupled Model Intercomparison Project Phase 5 (CMIP5). Nonlinear regression-based statistical downscaling was used to obtain rainfall at regional scale for Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. It was found that RCPs 2.6, 4.5, 6.0 and 8.5 predicted a future extreme rainfall of 693 mm, 431 mm, 282 mm and 564 mm for the years 2088, 2098, 2040 and 2068, respectively. SWMM results indicated that the future extreme rainfall in Hyderabad can result in increased runoff volumes causing flooding. The existing SWN was capable of handling RCP 6.0 with 82% runoff. However, it was inadequate to convey runoff from RCPs 2.6, 4.5 and 8.5. Modelling results suggest that the conveyance capacity of storm drains can be increased by 25–30% by desilting major drains and outlets.

Suggested Citation

  • Swathi Vemula & K. Srinivasa Raju & S. Sai Veena & A. Santosh Kumar, 2019. "Urban floods in Hyderabad, India, under present and future rainfall scenarios: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 637-655, February.
  • Handle: RePEc:spr:nathaz:v:95:y:2019:i:3:d:10.1007_s11069-018-3511-9
    DOI: 10.1007/s11069-018-3511-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3511-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3511-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    2. Carina L. Lopes & Fátima L. Alves & João M. Dias, 2017. "Flood risk assessment in a coastal lagoon under present and future scenarios: Ria de Aveiro case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1307-1325, December.
    3. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    4. Volker Meyer & Sebastian Scheuer & Dagmar Haase, 2009. "A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 17-39, January.
    5. Jan Huizinga & Hans de Moel & Wojciech Szewczyk, 2017. "Global flood depth-damage functions: Methodology and the database with guidelines," JRC Research Reports JRC105688, Joint Research Centre.
    6. Darren Waters & W. Edgar Watt & Jiri Marsalek & Bruce Anderson, 2003. "Adaptation of a Storm Drainage System to Accommodate Increased Rainfall Resulting from Climate Change," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 46(5), pages 755-770.
    7. C. Ramachandraiah & Sheela Prasad, 2004. "Impact of urban growth on water bodies: The case of Hyderabad," Centre for Economic and Social Studies, Hyderabad Working Papers 60, Centre for Economic and Social Studies, Hyderabad, India.
    8. C. Ramachandraiah & Sheela Prasad, 2004. "Impact of Urban Growth on Water Bodies - The Case of Hyderabad," Development Economics Working Papers 22157, East Asian Bureau of Economic Research.
    9. Monalisa Chatterjee, 2010. "Slum dwellers response to flooding events in the megacities of India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 337-353, April.
    10. Angshuman M. Saharia & Arup Kumar Sarma, 2018. "Future climate change impact evaluation on hydrologic processes in the Bharalu and Basistha basins using SWAT model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1463-1488, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nawnit Kumar & Xiaoli Liu & Sanjena Narayanasamydamodaran & Kamlesh Kumar Pandey, 2021. "A Systematic Review Comparing Urban Flood Management Practices in India to China’s Sponge City Program," Sustainability, MDPI, vol. 13(11), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nayan, Nakul kumar & Das, Arup & Mukerji, Arjun & Mazumder, Taraknath & Bera, Subhas, 2020. "Spatio-temporal dynamics of water resources of Hyderabad Metropolitan Area and its relationship with urbanization," Land Use Policy, Elsevier, vol. 99(C).
    2. Brill, Gregg & Anderson, Pippin & O'Farrell, Patrick, 2017. "Urban national parks in the global South: Linking management perceptions, policies and practices to water-related ecosystem services," Ecosystem Services, Elsevier, vol. 28(PB), pages 185-195.
    3. Cuneyt Yavuz & Elcin Kentel & Mustafa M. Aral, 2020. "Tsunami risk assessment: economic, environmental and social dimensions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1413-1442, November.
    4. Carsten Butsch & Shreya Chakraborty & Sharlene L. Gomes & Shamita Kumar & Leon M. Hermans, 2021. "Changing Hydrosocial Cycles in Periurban India," Land, MDPI, vol. 10(3), pages 1-22, March.
    5. Leelambar Singh & Subbarayan Saravanan & J. Jacinth Jennifer & D. Abijith, 2021. "Application of multi-influence factor (MIF) technique for the identification of suitable sites for urban settlement in Tiruchirappalli City, Tamil Nadu, India," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 797-823, October.
    6. Patricia Romero-Lankao & Daniel M. Gnatz & Joshua B. Sperling, 2016. "Examining urban inequality and vulnerability to enhance resilience: insights from Mumbai, India," Climatic Change, Springer, vol. 139(3), pages 351-365, December.
    7. Shah, Arpit & Garg, Amit, 2017. "Urban commons service generation, delivery, and management: A conceptual framework," Ecological Economics, Elsevier, vol. 135(C), pages 280-287.
    8. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    9. Hae-Yeol Kang & Seung Taek Chae & Eun-Sung Chung, 2023. "Quantifying Medium-Sized City Flood Vulnerability Due to Climate Change Using Multi-Criteria Decision-Making Techniques: Case of Republic of Korea," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    10. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    11. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    12. Tong Chen & Mo Wang & Jin Su & Jianjun Li, 2023. "Unlocking the Positive Impact of Bio-Swales on Hydrology, Water Quality, and Biodiversity: A Bibliometric Review," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    13. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    14. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    15. Badri Bhakta Shrestha & Edangodage Duminda Pradeep Perera & Shun Kudo & Mamoru Miyamoto & Yusuke Yamazaki & Daisuke Kuribayashi & Hisaya Sawano & Takahiro Sayama & Jun Magome & Akira Hasegawa & Tomoki, 2019. "Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 157-192, May.
    16. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    17. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    18. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    19. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    20. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:95:y:2019:i:3:d:10.1007_s11069-018-3511-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.