IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i2p1319-1334.html
   My bibliography  Save this article

Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk

Author

Listed:
  • Dan Ma
  • Haibo Bai

Abstract

The prediction of groundwater inflow in karst collapse pillar has an important impact on safety underground mining, and the occurrence of these groundwater disasters is likely to be controlled and decreased via establishing an accurate groundwater inflow prediction system. However, the relationship between groundwater inflow and the factors such as geological structure, hydrogeology, aquifer, groundwater pressure, groundwater-resisting layer, mining damage and so on can be highly nonlinear, so it is difficult to establish a suitable model using traditional mechanics methods to predict the groundwater inflow and inrush risk using time series data. It is appropriate to consider modelling methods developed in other fields in order to provide adequate models for rock behaviour on groundwater inflow, nonlinear grey Bernoulli model (NGBM) is a new grey prediction model which is a simple improvement of GM(1,1) together with Bernoulli differential equation. This paper presents a new parameter optimization scheme of NGBM using the genetic algorithm (GA). The power index r of Bernoulli differential equation and production coefficient of the background value are considered as decision variables, and the prediction mean absolute percentage error is taken as the optimization objective. Parameters optimization of NGBM was formulated as the combinatorial optimization problem and would be solved collectively using GA. The model can be optimized once the GA finds the optimal parameters of NGBM. NGBM with this parameter optimization algorithm is then applied in time series groundwater inflow prediction system. Results of long-term groundwater inflow prediction show that GA is an effective global optimization algorithm suitable for the parameter optimization of NGBM and the NGBM-GA model is suit for the groundwater inflow and inrush risk prediction. After grouting reconstruction, the groundwater inflow is decreased and there is no groundwater inrush risk in the process of mining. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Dan Ma & Haibo Bai, 2015. "Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1319-1334, March.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:2:p:1319-1334
    DOI: 10.1007/s11069-014-1551-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1551-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1551-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rui Zhang & Zhenquan Jiang & Qiang Sun & Shuyun Zhu, 2013. "The relationship between the deformation mechanism and permeability on brittle rock," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1179-1187, March.
    2. Chen, Chun-I, 2008. "Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 278-287.
    3. Rui Zhang & Zhenquan Jiang & Haiyang Zhou & Chaowei Yang & Shuaijun Xiao, 2014. "Groundwater outbursts from faults above a confined aquifer in the coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1861-1872, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Ma & Xiexing Miao & Haibo Bai & Jihui Huang & Hai Pu & Yu Wu & Guimin Zhang & Jiawei Li, 2016. "Effect of mining on shear sidewall groundwater inrush hazard caused by seepage instability of the penetrated karst collapse pillar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 73-93, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Huang & Wei Zeng & Yun Wu & ShiJie Li & Kui Zhao, 2019. "Experimental investigation of fracture propagation and inrush characteristics in tunnel construction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 193-210, May.
    2. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    3. En-Chih Chang, 2018. "Improving Performance for Full-Bridge Inverter of Wind Energy Conversion System Using a Fast and Efficient Control Technique," Energies, MDPI, vol. 11(2), pages 1-16, January.
    4. NGO, Hoang Anh & HOANG, Thai Nam, 2020. "A Rolling Optimized Nonlinear Grey Bernoulli Model RONGBM(1,1) and application in predicting total COVID-19 cases," OSF Preprints 6y95m, Center for Open Science.
    5. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    6. Gangwei Fan & Shizhong Zhang & Bobo Cao & Dongsheng Zhang & Chengguo Zhang, 2020. "Impact of Mine Panel Size on Hydraulic Permeability of Weakly Cemented Strata," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    7. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    8. Shangxian Yin & Jincai Zhang & Demin Liu, 2015. "A study of mine water inrushes by measurements of in situ stress and rock failures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1961-1979, December.
    9. Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Liviu Adrian Stoica, 2021. "Socioeconomic Effects of COVID-19 Pandemic: Exploring Uncertainty in the Forecast of the Romanian Unemployment Rate for the Period 2020–2023," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    10. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
    12. Yi-Chung Hu, 2022. "Demand forecasting of green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9809-9831, August.
    13. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    14. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    15. Aysha Malik & Ejaz Hussain & Sofia Baig & Muhammad Fahim Khokhar, 2020. "Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan Economic Corridor," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 380-389, April.
    16. Liu, Xiaomei & Xie, Naiming, 2019. "A nonlinear grey forecasting model with double shape parameters and its application," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 203-212.
    17. Haitao Yu & Shuyun Zhu & Huadong Xie & Junhua Hou, 2020. "Numerical simulation of water inrush in fault zone considering seepage paths," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1763-1779, November.
    18. Wen-Ze Wu & Tao Zhang & Chengli Zheng, 2019. "A Novel Optimized Nonlinear Grey Bernoulli Model for Forecasting China’s GDP," Complexity, Hindawi, vol. 2019, pages 1-10, October.
    19. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    20. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:2:p:1319-1334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.