IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i2p1189-1203.html
   My bibliography  Save this article

Population vulnerability assessment based on scenario simulation of rainstorm-induced waterlogging: a case study of Xuhui District, Shanghai City

Author

Listed:
  • Yong Shi

Abstract

Waterlogging is one of the most serious hazards in cities. People are the core of the human social system and the main group affected by disasters. This research introduces a method of scenario simulation which provides a basis for the accurate measurement of exposure to waterlogging. Then based on the concept and structure of vulnerability, representative indicators are selected to develop an indicator system based on objective weights derived from principal components analysis. The method is then used to conduct a population vulnerability assessment in Xuhui District of Shanghai city based on scenario simulation of rainstorm-induced waterlogging over a 50-year period. The final assessment results show that the population vulnerability is greatest for Tianlin Street, Lingyun Street, Changqiao Street, Fenglin Street, and Caohejing Street, while Tianping Street, Xujiahui Street, and Xietulu Street have medium levels of vulnerability. Hongmei Road Street, Healthy Village Street, Longhua Street, and Hunan Road Street have low levels of vulnerability, and Huajing Town is the area with the lowest population vulnerability. The results provide both necessary information and guidance for the government to improve the flood management. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Yong Shi, 2013. "Population vulnerability assessment based on scenario simulation of rainstorm-induced waterlogging: a case study of Xuhui District, Shanghai City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1189-1203, March.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:1189-1203
    DOI: 10.1007/s11069-012-0544-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0544-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0544-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yarnal, Brent, 2007. "Vulnerability and all that jazz: Addressing vulnerability in New Orleans after Hurricane Katrina," Technology in Society, Elsevier, vol. 29(2), pages 249-255.
    2. Yong Shi & Chun Shi & Shi-Yuan Xu & A-Li Sun & Jun Wang, 2010. "Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 259-272, May.
    3. Alice Fothergill & Lori Peek, 2004. "Poverty and Disasters in the United States: A Review of Recent Sociological Findings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 89-110, May.
    4. Dagmar Schröter & Colin Polsky & Anthony Patt, 2005. "Assessing vulnerabilities to the effects of global change: an eight step approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(4), pages 573-595, October.
    5. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    2. Yiche Wang & Hai Li & Yong Shi & Qian Yao, 2022. "A Study on Spatial Accessibility of the Urban Stadium Emergency Response under the Flood Disaster Scenario," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    3. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    4. Yuanyuan He & Zaiwu Gong, 2014. "China’s regional rainstorm floods disaster evaluation based on grey incidence multiple-attribute decision model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1125-1144, March.
    5. Haihong Yuan & Xiaolu Gao & Wei Qi, 2019. "Fine-Scale Spatiotemporal Analysis of Population Vulnerability to Earthquake Disasters: Theoretical Models and Application to Cities," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    6. Tzu-Ling Chen & Larry Paris, 2022. "Identifying key environmental and building features affecting the outcome of a seismic event: a case study of the “921” earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2627-2647, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongming Wang & Brent Yarnal, 2012. "The vulnerability of the elderly to hurricane hazards in Sarasota, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 349-373, September.
    2. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    3. Terese E. Venus & Stephanie Bilgram & Johannes Sauer & Arun Khatri-Chettri, 2022. "Livelihood vulnerability and climate change: a comparative analysis of smallholders in the Indo-Gangetic plains," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1981-2009, February.
    4. Ethan J. Raker, 2020. "Natural Hazards, Disasters, and Demographic Change: The Case of Severe Tornadoes in the United States, 1980–2010," Demography, Springer;Population Association of America (PAA), vol. 57(2), pages 653-674, April.
    5. Karen E Engel, 2016. "Talcahuano, Chile, in the wake of the 2010 disaster: A vulnerable middle?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1057-1081, January.
    6. Gaither, Cassandra Johnson & Poudyal, Neelam C. & Goodrick, Scott & Bowker, J.M. & Malone, Sparkle & Gan, Jianbang, 2011. "Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach," Forest Policy and Economics, Elsevier, vol. 13(1), pages 24-36, January.
    7. Emily Fucile-Sanchez & Meri Davlasheridze, 2020. "Adjustments of Socially Vulnerable Populations in Galveston County, Texas USA Following Hurricane Ike," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    8. Shepherd, Philippa M. & Dissart, Jean-Christophe, 2022. "Reframing vulnerability and resilience to climate change through the lens of capability generation," Ecological Economics, Elsevier, vol. 201(C).
    9. Elizabeth Jordan & Amy Javernick-Will & Kathleen Tierney, 2016. "Post-tsunami recovery in Tamil Nadu, India: combined social and infrastructural outcomes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1327-1347, November.
    10. Zhe Huang & Emily Ying Yang Chan & Chi Shing Wong & Benny Chung Ying Zee, 2021. "Clustering of Socioeconomic Data in Hong Kong for Planning Better Community Health Protection," IJERPH, MDPI, vol. 18(23), pages 1-21, November.
    11. Sungyoon Lee & Jennifer Dodge & Gang Chen, 2022. "The cost of social vulnerability: an integrative conceptual framework and model for assessing financial risks in natural disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 691-712, October.
    12. Tormos-Aponte, Fernando & García-López, Gustavo & Painter, Mary Angelica, 2021. "Energy inequality and clientelism in the wake of disasters: From colorblind to affirmative power restoration," Energy Policy, Elsevier, vol. 158(C).
    13. Stav Shapira & Limor Aharonson-Daniel & Igal Shohet & Corinne Peek-Asa & Yaron Bar-Dayan, 2015. "Integrating epidemiological and engineering approaches in the assessment of human casualties in earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1447-1462, September.
    14. Joseph Karanja & Lawrence M. Kiage, 2022. "Scale implications and evolution of a social vulnerability index in Atlanta, Georgia, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 789-812, August.
    15. Ann-Margaret Esnard & Alka Sapat & Diana Mitsova, 2011. "An index of relative displacement risk to hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 833-859, November.
    16. Sisi Meng & Pallab Mozumder, 2021. "Hurricane Sandy: Damages, Disruptions and Pathways to Recovery," Economics of Disasters and Climate Change, Springer, vol. 5(2), pages 223-247, July.
    17. Yu Chen, 2016. "Conceptual Framework for the Development of an Indicator System for the Assessment of Regional Land Subsidence Disaster Vulnerability," Sustainability, MDPI, vol. 8(8), pages 1-16, August.
    18. Ronak Paul & Sean Reid & Carolina Coimbra Vieira & Christopher Wolfe & Yuan Zhao & Yan Zhang & Rumi Chunara, 2023. "Methodological improvements in social vulnerability index construction reinforce role of wealth across international contexts," MPIDR Working Papers WP-2023-017, Max Planck Institute for Demographic Research, Rostock, Germany.
    19. Minkyu Park, 2023. "Persistent Social Vulnerability in Washington D.C. Communities and Green Infrastructure Clustering," Land, MDPI, vol. 12(10), pages 1-18, October.
    20. Kelsea Best & Siobhan Kerr & Allison Reilly & Anand Patwardhan & Deb Niemeier & Seth Guikema, 2023. "Spatial regression identifies socioeconomic inequality in multi-stage power outage recovery after Hurricane Isaac," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 851-873, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:1189-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.