IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i2p1447-1462.html
   My bibliography  Save this article

Integrating epidemiological and engineering approaches in the assessment of human casualties in earthquakes

Author

Listed:
  • Stav Shapira
  • Limor Aharonson-Daniel
  • Igal Shohet
  • Corinne Peek-Asa
  • Yaron Bar-Dayan

Abstract

Earthquakes pose substantial risks of human health. Preparedness and mitigation strategies can reduce earthquake-related injuries and deaths and information from casualty models that predict earthquake outcomes can help communities prepare. This study identifies epidemiologic and medical risk factors for earthquake casualties, and compares them with engineering casualty models for the purpose of providing evidence that integrates these approaches. It aims to improve earthquake casualty modeling and to offer better accurate estimations. Epidemiological studies that used analytical designs and reported risk factors related to earthquake-induced casualties and studies that examined the association between medical preparedness and earthquake-induced casualties were reviewed. Engineering casualty estimation models were reviewed to identify which risk factors were considered in the models. Epidemiological studies identified the following risk factors: gender, age, socioeconomic status, physical disability and human behavior. Medical preparedness factors were also related to earthquake-induced injury and death. Global casualty estimation models do not currently consider these factors. This study provides evidence that integrating demographic and socioeconomic characteristics of the population and levels of medical preparedness into the existing casualty estimation models may improve their accuracy. Copyright The Author(s) 2015

Suggested Citation

  • Stav Shapira & Limor Aharonson-Daniel & Igal Shohet & Corinne Peek-Asa & Yaron Bar-Dayan, 2015. "Integrating epidemiological and engineering approaches in the assessment of human casualties in earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1447-1462, September.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:2:p:1447-1462
    DOI: 10.1007/s11069-015-1780-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1780-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1780-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alice Fothergill & Lori Peek, 2004. "Poverty and Disasters in the United States: A Review of Recent Sociological Findings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 89-110, May.
    2. Douglas Paton & Robert Bajek & Norio Okada & David McIvor, 2010. "Predicting community earthquake preparedness: a cross-cultural comparison of Japan and New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 765-781, September.
    3. Yingchun Li & Zhongliang Wu & Yizhe Zhao, 2011. "Estimating the number of casualties in earthquakes from early field reports and improving the estimate with time," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 699-708, March.
    4. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    5. Matthew E. Kahn, 2005. "The Death Toll from Natural Disasters: The Role of Income, Geography, and Institutions," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 271-284, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stav Shapira & Lena Novack & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2016. "An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    2. Muhammet Gul & Ali Fuat Guneri, 2016. "An artificial neural network-based earthquake casualty estimation model for Istanbul city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2163-2178, December.
    3. Tongyan Zheng & Lei Li & Chong Xu & Yuandong Huang, 2023. "Spatiotemporal Analysis of Earthquake Distribution and Associated Losses in Chinese Mainland from 1949 to 2021," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    4. Chaoxu Xia & Gaozhong Nie & Huayue Li & Xiwei Fan & Wenhua Qi, 2023. "A composite database of casualty-inducing earthquakes in mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3321-3351, April.
    5. Stav Shapira & Tsafrir Levi & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2018. "The impact of behavior on the risk of injury and death during an earthquake: a simulation-based study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1059-1074, April.
    6. Chen, Weiyi & Zhang, Limao, 2022. "An automated machine learning approach for earthquake casualty rate and economic loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Tingting Ji & Hsi-Hsien Wei & Igal M. Shohet & Feng Xiong, 2021. "Risk-based resilience concentration assessment of community to seismic hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1731-1751, September.
    8. Xia Chaoxu & Nie Gaozhong & Fan Xiwei & Li Huayue & Zhou Junxue & Zeng Xun, 2022. "A new model for the quantitative assessment of earthquake casualties based on the correction of anti-lethal level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1199-1226, January.
    9. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    10. Erfan Firuzi & Kambod Amini Hosseini & Anooshiravan Ansari & Yasamin O. Izadkhah & Mina Rashidabadi & Mohammad Hosseini, 2020. "An empirical model for fatality estimation of earthquakes in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 231-250, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jungmin Lim & Mark Skidmore, 2019. "Flood Fatalities in the United States: The Roles of Socioeconomic Factors and the National Flood Insurance Program," Southern Economic Journal, John Wiley & Sons, vol. 85(4), pages 1032-1057, April.
    2. Sungyoon Lee & Jennifer Dodge & Gang Chen, 2022. "The cost of social vulnerability: an integrative conceptual framework and model for assessing financial risks in natural disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 691-712, October.
    3. Tingting Ji & Hsi-Hsien Wei & Igal M. Shohet & Feng Xiong, 2021. "Risk-based resilience concentration assessment of community to seismic hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1731-1751, September.
    4. Jelena Kovačević-Majkić & Milena Panić & Dragana Miljanović & Radmila Miletić, 2014. "Vulnerability to natural disasters in Serbia: spatial and temporal comparison," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 945-968, June.
    5. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    6. Noy, Ilan & Yonson, Rio, 2016. "A survey of the theory and measurement of economic vulnerability and resilience to natural hazards," Working Paper Series 19394, Victoria University of Wellington, School of Economics and Finance.
    7. Karen E Engel, 2016. "Talcahuano, Chile, in the wake of the 2010 disaster: A vulnerable middle?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1057-1081, January.
    8. Emily Fucile-Sanchez & Meri Davlasheridze, 2020. "Adjustments of Socially Vulnerable Populations in Galveston County, Texas USA Following Hurricane Ike," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    9. Ilan Noy & Rio Yonson, 2018. "Economic Vulnerability and Resilience to Natural Hazards: A Survey of Concepts and Measurements," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    10. Elizabeth Jordan & Amy Javernick-Will & Kathleen Tierney, 2016. "Post-tsunami recovery in Tamil Nadu, India: combined social and infrastructural outcomes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1327-1347, November.
    11. Zhe Huang & Emily Ying Yang Chan & Chi Shing Wong & Benny Chung Ying Zee, 2021. "Clustering of Socioeconomic Data in Hong Kong for Planning Better Community Health Protection," IJERPH, MDPI, vol. 18(23), pages 1-21, November.
    12. Joseph Karanja & Lawrence M. Kiage, 2022. "Scale implications and evolution of a social vulnerability index in Atlanta, Georgia, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 789-812, August.
    13. Ann-Margaret Esnard & Alka Sapat & Diana Mitsova, 2011. "An index of relative displacement risk to hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 833-859, November.
    14. Sara Lindersson & Elena Raffetti & Maria Rusca & Luigia Brandimarte & Johanna Mård & Giuliano Di Baldassarre, 2023. "The wider the gap between rich and poor the higher the flood mortality," Nature Sustainability, Nature, vol. 6(8), pages 995-1005, August.
    15. María Ibarrarán & Matthias Ruth & Sanjana Ahmad & Marisa London, 2009. "Climate change and natural disasters: macroeconomic performance and distributional impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(3), pages 549-569, June.
    16. Suzanne Phibbs & Christine Kenney & Graciela Rivera-Munoz & Thomas J. Huggins & Christina Severinsen & Bruce Curtis, 2018. "The Inverse Response Law: Theory and Relevance to the Aftermath of Disasters," IJERPH, MDPI, vol. 15(5), pages 1-25, May.
    17. Bas van Bavel & Daniel Curtis, 2015. "Better understanding disasters by better using history: Systematically using the historical record as one way to advance research into disasters," Working Papers 0068, Utrecht University, Centre for Global Economic History.
    18. A.-M. Esnard & B. S. Lai & C. Wyczalkowski & N. Malmin & H. J. Shah, 2018. "School vulnerability to disaster: examination of school closure, demographic, and exposure factors in Hurricane Ike’s wind swath," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 513-535, January.
    19. Mar Llorente-Marrón & Montserrat Díaz-Fernández & Paz Méndez-Rodríguez & Rosario González Arias, 2020. "Social Vulnerability, Gender and Disasters. The Case of Haiti in 2010," Sustainability, MDPI, vol. 12(9), pages 1-21, April.
    20. Qing Miao & Michael Abrigo & Yilin Hou & Yanjun (Penny) Liao, 2023. "Extreme Weather Events and Local Fiscal Responses: Evidence from U.S. Counties," Economics of Disasters and Climate Change, Springer, vol. 7(1), pages 93-115, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:2:p:1447-1462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.