IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i1d10.1007_s11009-020-09803-z.html
   My bibliography  Save this article

Modelling of Limit Order Books by General Compound Hawkes Processes with Implementations

Author

Listed:
  • Anatoliy Swishchuk

    (University of Calgary)

Abstract

In this paper, we study so-called general compound and regime-switching general compound Hawkes processes to model the price processes in the limit order books. We prove Law of Large Numbers (LLNs) and Functional Central Limit Theorems (FCLTs), the main results of the present paper, for both cases, non-regime-switching (Lemma 1 and Theorem 1) and regime-switching (Lemma 2 and Theorem 2) cases. The latter two FCLTs are applied to limit order books, where we use these asymptotic methods to study the link between price volatility and order flow in our two models by investigating the diffusion limits of these price processes. The volatilities of price changes are expressed in terms of parameters describing the arrival rates and price changes. Numerical examples are presented for LOBster and Cisco data.

Suggested Citation

  • Anatoliy Swishchuk, 2021. "Modelling of Limit Order Books by General Compound Hawkes Processes with Implementations," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 399-428, March.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09803-z
    DOI: 10.1007/s11009-020-09803-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09803-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09803-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    2. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    3. Anatoliy Swishchuk & Tyler Hofmeister & Katharina Cera & Julia Schmidt, 2017. "General Semi-Markov Model For Limit Order Books," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-21, May.
    4. Engle, Robert F. & Lange, Joe, 2001. "Predicting VNET: A model of the dynamics of market depth," Journal of Financial Markets, Elsevier, vol. 4(2), pages 113-142, April.
    5. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    6. Jonathan A. Ch'avez-Casillas & Robert J. Elliott & Bruno R'emillard & Anatoliy V. Swishchuk, 2017. "A level-1 Limit Order book with time dependent arrival rates," Papers 1704.06572, arXiv.org.
    7. D’Amico, Guglielmo & Petroni, Filippo, 2018. "Copula based multivariate semi-Markov models with applications in high-frequency finance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 765-777.
    8. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    9. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    10. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    11. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    12. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    13. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 159-188.
    14. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    15. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    16. Anatoliy Swishchuk, 2017. "Risk Model Based on General Compound Hawkes Process," Papers 1706.09038, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myles Sjogren & Timothy DeLise, 2021. "General Compound Hawkes Processes for Mid-Price Prediction," Papers 2110.07075, arXiv.org.
    2. Kyungsub Lee, 2023. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Papers 2302.11822, arXiv.org.
    3. Anatoliy Swishchuk, 2021. "Merton Investment Problems in Finance and Insurance for the Hawkes-based Models," Papers 2104.02694, arXiv.org, revised May 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy Swishchuk & Aiden Huffman, 2018. "General Compound Hawkes Processes in Limit Order Books," Papers 1812.02298, arXiv.org.
    2. Anatoliy Swishchuk, 2017. "General Compound Hawkes Processes in Limit Order Books," Papers 1706.07459, arXiv.org, revised Jun 2017.
    3. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    4. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    5. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Papers 2008.00124, arXiv.org.
    6. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Risks, MDPI, vol. 8(3), pages 1-20, September.
    7. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org.
    8. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    9. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    10. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    11. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    12. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    13. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    14. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Ioane Muni Toke, 2010. ""Market making" behaviour in an order book model and its impact on the bid-ask spread," Papers 1003.3796, arXiv.org, revised Jun 2010.
    16. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    17. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    18. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.
    19. Yang Shen & Bin Zou, 2021. "Mean-Variance Portfolio Selection in Contagious Markets," Papers 2110.09417, arXiv.org.
    20. Ioane Muni Toke, 2011. ""Market making" behaviour in an order book model and its impact on the bid-ask spread," Post-Print hal-01705266, HAL.
    21. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09803-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.