IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i1d10.1007_s10985-020-09510-4.html
   My bibliography  Save this article

Firth adjusted score function for monotone likelihood in the mixture cure fraction model

Author

Listed:
  • Frederico Machado Almeida

    (Universidade Federal de Minas Gerais)

  • Enrico Antônio Colosimo

    (Universidade Federal de Minas Gerais)

  • Vinícius Diniz Mayrink

    (Universidade Federal de Minas Gerais)

Abstract

Models for situations where some individuals are long-term survivors, immune or non-susceptible to the event of interest, are extensively studied in biomedical research. Fitting a regression can be problematic in situations involving small sample sizes with high censoring rate, since the maximum likelihood estimates of some coefficients may be infinity. This phenomenon is called monotone likelihood, and it occurs in the presence of many categorical covariates, especially when one covariate level is not associated with any failure (in survival analysis) or when a categorical covariate perfectly predicts a binary response (in the logistic regression). A well known solution is an adaptation of the Firth method, originally created to reduce the estimation bias. The method provides a finite estimate by penalizing the likelihood function. Bias correction in the mixture cure model is a topic rarely discussed in the literature and it configures a central contribution of this work. In order to handle this point in such context, we propose to derive the adjusted score function based on the Firth method. An extensive Monte Carlo simulation study indicates good inference performance for the penalized maximum likelihood estimates. The analysis is illustrated through a real application involving patients with melanoma assisted at the Hospital das Clínicas/UFMG in Brazil. This is a relatively novel data set affected by the monotone likelihood issue and containing cured individuals.

Suggested Citation

  • Frederico Machado Almeida & Enrico Antônio Colosimo & Vinícius Diniz Mayrink, 2021. "Firth adjusted score function for monotone likelihood in the mixture cure fraction model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 131-155, January.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:1:d:10.1007_s10985-020-09510-4
    DOI: 10.1007/s10985-020-09510-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-020-09510-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-020-09510-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georg Heinze & Michael Schemper, 2001. "A Solution to the Problem of Monotone Likelihood in Cox Regression," Biometrics, The International Biometric Society, vol. 57(1), pages 114-119, March.
    2. Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
    3. Yeqian Liu & Tao Hu & Jianguo Sun, 2017. "Regression analysis of current status data in the presence of a cured subgroup and dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 626-650, October.
    4. Zorn, Christopher, 2005. "A Solution to Separation in Binary Response Models," Political Analysis, Cambridge University Press, vol. 13(2), pages 157-170, April.
    5. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    6. Mengling Liu & Wenbin Lu & Yongzhao Shao, 2006. "Interval Mapping of Quantitative Trait Loci for Time-to-Event Data with the Proportional Hazards Mixture Cure Model," Biometrics, The International Biometric Society, vol. 62(4), pages 1053-1061, December.
    7. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    8. Mao, Meng & Wang, Jane-Ling, 2010. "Semiparametric Efficient Estimation for a Class of Generalized Proportional Odds Cure Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 302-311.
    9. Wenbin Lu, 2008. "Maximum likelihood estimation in the proportional hazards cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 545-574, September.
    10. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.
    11. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    12. Pianto, Donald M. & Cribari-Neto, Francisco, 2011. "Dealing with monotone likelihood in a model for speckled data," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1394-1409, March.
    13. Rainey, Carlisle, 2016. "Dealing with Separation in Logistic Regression Models," Political Analysis, Cambridge University Press, vol. 24(3), pages 339-355, July.
    14. E C Kenne Pagui & A Salvan & N Sartori, 2017. "Median bias reduction of maximum likelihood estimates," Biometrika, Biometrika Trust, vol. 104(4), pages 923-938.
    15. Hong‐Bin Fang & Gang Li & Jianguo Sun, 2005. "Maximum Likelihood Estimation in a Semiparametric Logistic/Proportional‐Hazards Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(1), pages 59-75, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frederico M. Almeida & Vinícius D. Mayrink & Enrico A. Colosimo, 2023. "Bayesian solution to the monotone likelihood in the standard mixture cure model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 365-390, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    2. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    3. Frederico M. Almeida & Vinícius D. Mayrink & Enrico A. Colosimo, 2023. "Bayesian solution to the monotone likelihood in the standard mixture cure model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 365-390, August.
    4. Motahareh Parsa & Ingrid Van Keilegom, 2023. "Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath?," Statistical Papers, Springer, vol. 64(3), pages 835-855, June.
    5. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    6. Sandip Barui & Grace Y. Yi, 2020. "Semiparametric methods for survival data with measurement error under additive hazards cure rate models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 421-450, July.
    7. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    8. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    9. Angelica Hernandez-Quintero & Jean-François Dupuy & Gabriel Escarela, 2011. "Analysis of a semiparametric mixture model for competing risks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 305-329, April.
    10. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    11. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    12. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    13. Patilea, Valentin & Van Keilegom, Ingrid, 2017. "A general approach for cure models in survival analysis," LIDAM Discussion Papers ISBA 2017008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Peizhi Li & Yingwei Peng & Ping Jiang & Qingli Dong, 2020. "A support vector machine based semiparametric mixture cure model," Computational Statistics, Springer, vol. 35(3), pages 931-945, September.
    15. Wei‐Wen Hsu & David Todem & KyungMann Kim, 2016. "A sup‐score test for the cure fraction in mixture models for long‐term survivors," Biometrics, The International Biometric Society, vol. 72(4), pages 1348-1357, December.
    16. Yingwei Peng & Jeremy M. G. Taylor, 2017. "Residual-based model diagnosis methods for mixture cure models," Biometrics, The International Biometric Society, vol. 73(2), pages 495-505, June.
    17. Wenbin Lu, 2008. "Maximum likelihood estimation in the proportional hazards cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 545-574, September.
    18. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    19. Scolas, Sylvie & Legrand, Catherine & Oulhaj, Abderrahim & El Ghouch, Anouar, 2016. "Diagnostic checks in mixture cure models with interval-censoring," LIDAM Discussion Papers ISBA 2016014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:1:d:10.1007_s10985-020-09510-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.