IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1348-1357.html
   My bibliography  Save this article

A sup‐score test for the cure fraction in mixture models for long‐term survivors

Author

Listed:
  • Wei‐Wen Hsu
  • David Todem
  • KyungMann Kim

Abstract

The evaluation of cure fractions in oncology research under the well known cure rate model has attracted considerable attention in the literature, but most of the existing testing procedures have relied on restrictive assumptions. A common assumption has been to restrict the cure fraction to a constant under alternatives to homogeneity, thereby neglecting any information from covariates. This article extends the literature by developing a score‐based statistic that incorporates covariate information to detect cure fractions, with the existing testing procedure serving as a special case. A complication of this extension, however, is that the implied hypotheses are not typical and standard regularity conditions to conduct the test may not even hold. Using empirical processes arguments, we construct a sup‐score test statistic for cure fractions and establish its limiting null distribution as a functional of mixtures of chi‐square processes. In practice, we suggest a simple resampling procedure to approximate this limiting distribution. Our simulation results show that the proposed test can greatly improve efficiency over tests that neglect the heterogeneity of the cure fraction under the alternative. The practical utility of the methodology is illustrated using ovarian cancer survival data with long‐term follow‐up from the surveillance, epidemiology, and end results registry.

Suggested Citation

  • Wei‐Wen Hsu & David Todem & KyungMann Kim, 2016. "A sup‐score test for the cure fraction in mixture models for long‐term survivors," Biometrics, The International Biometric Society, vol. 72(4), pages 1348-1357, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1348-1357
    DOI: 10.1111/biom.12514
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12514
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chong-Zhi Di & Kung-Yee Liang, 2011. "Likelihood Ratio Testing for Admixture Models with Application to Genetic Linkage Analysis," Biometrics, The International Biometric Society, vol. 67(4), pages 1249-1259, December.
    2. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    3. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    4. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    5. Yi Li & Ram C. Tiwari & Subharup Guha, 2007. "Mixture cure survival models with dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 285-306, June.
    6. Geert Verbeke & Geert Molenberghs, 2003. "The Use of Score Tests for Inference on Variance Components," Biometrics, The International Biometric Society, vol. 59(2), pages 254-262, June.
    7. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    8. David Todem & Wei-Wen Hsu & KyungMann Kim, 2012. "On the Efficiency of Score Tests for Homogeneity in Two-Component Parametric Models for Discrete Data," Biometrics, The International Biometric Society, vol. 68(3), pages 975-982, September.
    9. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    10. Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
    11. Christian Ritz & Ib M. Skovgaard, 2005. "Likelihood ratio tests in curved exponential families with nuisance parameters present only under the alternative," Biometrika, Biometrika Trust, vol. 92(3), pages 507-517, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Todem & Wei‐Wen Hsu & KyungMann Kim, 2023. "Nonparametric scanning tests of homogeneity for hierarchical models with continuous covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2063-2075, September.
    2. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    3. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    5. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    6. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    7. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    8. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    9. Lopez-Cheda , Ana & Cao, Ricardo & Jacome, Maria Amalia & Van Keilegom, Ingrid, 2015. "Nonparametric incidence and latency estimation in mixture cure models," LIDAM Discussion Papers ISBA 2015014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    11. Naveen Narisetty & Roger Koenker, 2019. "Censored quantile regression survival models with a cure proportion," CeMMAP working papers CWP56/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Ana López-Cheda & M. Amalia Jácome & Ricardo Cao, 2017. "Nonparametric latency estimation for mixture cure models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 353-376, June.
    13. Philippe Lambert & Vincent Bremhorst, 2020. "Inclusion of time‐varying covariates in cure survival models with an application in fertility studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 333-354, January.
    14. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    15. Frederico Machado Almeida & Enrico Antônio Colosimo & Vinícius Diniz Mayrink, 2021. "Firth adjusted score function for monotone likelihood in the mixture cure fraction model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 131-155, January.
    16. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    17. Yingwei Peng & Jeremy M. G. Taylor, 2017. "Residual-based model diagnosis methods for mixture cure models," Biometrics, The International Biometric Society, vol. 73(2), pages 495-505, June.
    18. Christian Ritz, 2013. "Penalized likelihood ratio tests for repeated measurement models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 534-547, September.
    19. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    20. Scolas, Sylvie & Legrand, Catherine & Oulhaj, Abderrahim & El Ghouch, Anouar, 2016. "Diagnostic checks in mixture cure models with interval-censoring," LIDAM Discussion Papers ISBA 2016014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1348-1357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.