IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v174y2017i2d10.1007_s10957-017-1137-9.html
   My bibliography  Save this article

Using Improved Directions of Negative Curvature for the Solution of Bound-Constrained Nonconvex Problems

Author

Listed:
  • Javier Cano

    (Rey Juan Carlos University)

  • Javier M. Moguerza

    (Rey Juan Carlos University)

  • Francisco J. Prieto

    (Carlos III University)

Abstract

In this work, we describe the efficient use of improved directions of negative curvature for the solution of bound-constrained nonconvex problems. We follow an interior-point framework, in which the key point is the inclusion of computational low-cost procedures to improve directions of negative curvature obtained from a factorisation of the KKT matrix. From a theoretical point of view, it is well known that these directions ensure convergence to second-order KKT points. As a novelty, we consider the convergence rate of the algorithm with exploitation of negative curvature information. Finally, we test the performance of our proposal on both CUTEr/st and simulated problems, showing empirically that the enhanced directions affect positively the practical performance of the procedure.

Suggested Citation

  • Javier Cano & Javier M. Moguerza & Francisco J. Prieto, 2017. "Using Improved Directions of Negative Curvature for the Solution of Bound-Constrained Nonconvex Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 474-499, August.
  • Handle: RePEc:spr:joptap:v:174:y:2017:i:2:d:10.1007_s10957-017-1137-9
    DOI: 10.1007/s10957-017-1137-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1137-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1137-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moguerza, Javier M. & Olivares, Alberto & Prieto, Francisco J., 2007. "A note on the use of vector barrier parameters for interior-point methods," European Journal of Operational Research, Elsevier, vol. 181(2), pages 571-585, September.
    2. Walter Murray & Kien-Ming Ng, 2010. "An algorithm for nonlinear optimization problems with binary variables," Computational Optimization and Applications, Springer, vol. 47(2), pages 257-288, October.
    3. Olivares, Alberto & Moguerza, Javier M. & Prieto, Francisco J., 2008. "Nonconvex optimization using negative curvature within a modified linesearch," European Journal of Operational Research, Elsevier, vol. 189(3), pages 706-722, September.
    4. Alberto Olivares & Javier Moguerza, 2009. "Improving directions of negative curvature in an efficient manner," Annals of Operations Research, Springer, vol. 166(1), pages 183-201, February.
    5. Sun, Jie & Yang, Xiaoqi & Chen, Xiongda, 2005. "Quadratic cost flow and the conjugate gradient method," European Journal of Operational Research, Elsevier, vol. 164(1), pages 104-114, July.
    6. S. Sanmatías & E. Vercher, 1998. "A Generalized Conjugate Gradient Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 489-502, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Olivares & Javier Moguerza, 2009. "Improving directions of negative curvature in an efficient manner," Annals of Operations Research, Springer, vol. 166(1), pages 183-201, February.
    2. Olivares, Alberto & Moguerza, Javier M. & Prieto, Francisco J., 2008. "Nonconvex optimization using negative curvature within a modified linesearch," European Journal of Operational Research, Elsevier, vol. 189(3), pages 706-722, September.
    3. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2011. "A new class of functions for measuring solution integrality in the Feasibility Pump approach," DIS Technical Reports 2011-08, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Rupaj Kumar Nayak & Nirmalya Kumar Mohanty, 2020. "Solution of boolean quadratic programming problems by two augmented Lagrangian algorithms based on a continuous relaxation," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 792-825, April.
    5. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    6. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2013. "A new class of functions for measuring solution integrality in the Feasibility Pump approach: Complete Results," DIAG Technical Reports 2013-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    7. Hajime Kawakami, 2015. "Reconstruction algorithm for unknown cavities via Feynman–Kac type formula," Computational Optimization and Applications, Springer, vol. 61(1), pages 101-133, May.
    8. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    10. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2020. "An overview of MINLP algorithms and their implementation in Muriqui Optimizer," Annals of Operations Research, Springer, vol. 286(1), pages 217-241, March.
    11. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2018. "Integrality gap minimization heuristics for binary mixed integer nonlinear programming," Journal of Global Optimization, Springer, vol. 71(3), pages 593-612, July.
    12. M. Santis & F. Rinaldi, 2012. "Continuous Reformulations for Zero–One Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 75-84, April.
    13. Nitish Das & P. Aruna Priya, 2019. "A Gradient-Based Interior-Point Method to Solve the Many-to-Many Assignment Problems," Complexity, Hindawi, vol. 2019, pages 1-13, July.
    14. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    15. Abdolmaleki, Mojtaba & Shahabi, Mehrdad & Yin, Yafeng & Masoud, Neda, 2021. "Itinerary planning for cooperative truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 91-110.
    16. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2014. "Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming," Journal of Global Optimization, Springer, vol. 60(2), pages 373-389, October.
    17. Ma, Cheng & Zhang, Liansheng, 2015. "On an exact penalty function method for nonlinear mixed discrete programming problems and its applications in search engine advertising problems," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 642-656.
    18. Michael Haythorpe & Walter Murray, 2022. "Finding a Hamiltonian cycle by finding the global minimizer of a linearly constrained problem," Computational Optimization and Applications, Springer, vol. 81(1), pages 309-336, January.
    19. Shi, Zhen-Jun & Shen, Jie, 2007. "Convergence of Liu-Storey conjugate gradient method," European Journal of Operational Research, Elsevier, vol. 182(2), pages 552-560, October.
    20. S. Lucidi & F. Rinaldi, 2010. "Exact Penalty Functions for Nonlinear Integer Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 479-488, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:174:y:2017:i:2:d:10.1007_s10957-017-1137-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.