IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v286y2020i1d10.1007_s10479-018-2872-5.html
   My bibliography  Save this article

An overview of MINLP algorithms and their implementation in Muriqui Optimizer

Author

Listed:
  • Wendel Melo

    (Federal University of Uberlandia)

  • Marcia Fampa

    (Federal University of Rio de Janeiro)

  • Fernanda Raupp

    (National Laboratory for Scientific Computing (LNCC) of the Ministry of Science, Technology and Innovation)

Abstract

We present an overview of the main algorithms in the literature for convex mixed integer nonlinear programming and discuss aspects of their implementation in a new open source computational package called Muriqui Optimizer. We provide extensive computational results comparing the implementations of all approaches considered on a set of 343 benchmark test problems. Finally, we present to the technical and scientific community the new software Muriqui Optimizer.

Suggested Citation

  • Wendel Melo & Marcia Fampa & Fernanda Raupp, 2020. "An overview of MINLP algorithms and their implementation in Muriqui Optimizer," Annals of Operations Research, Springer, vol. 286(1), pages 217-241, March.
  • Handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-018-2872-5
    DOI: 10.1007/s10479-018-2872-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2872-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2872-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    2. Arthur F. Veinott, 1967. "The Supporting Hyperplane Method for Unimodal Programming," Operations Research, INFORMS, vol. 15(1), pages 147-152, February.
    3. Marcia Fampa & Jon Lee & Wendel Melo, 2016. "A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in n-space," Computational Optimization and Applications, Springer, vol. 65(1), pages 47-71, September.
    4. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2018. "Integrality gap minimization heuristics for binary mixed integer nonlinear programming," Journal of Global Optimization, Springer, vol. 71(3), pages 593-612, July.
    5. Still, Claus & Westerlund, Tapio, 2006. "A sequential cutting plane algorithm for solving convex NLP problems," European Journal of Operational Research, Elsevier, vol. 173(2), pages 444-464, September.
    6. Walter Murray & Kien-Ming Ng, 2010. "An algorithm for nonlinear optimization problems with binary variables," Computational Optimization and Applications, Springer, vol. 47(2), pages 257-288, October.
    7. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2014. "Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming," Journal of Global Optimization, Springer, vol. 60(2), pages 373-389, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Liu & Shurong Li, 2022. "A numerical method for interval multi-objective mixed-integer optimal control problems based on quantum heuristic algorithm," Annals of Operations Research, Springer, vol. 311(2), pages 853-898, April.
    2. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2014. "Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming," Journal of Global Optimization, Springer, vol. 60(2), pages 373-389, October.
    2. Marcia Fampa & Jon Lee & Wendel Melo, 2016. "A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in n-space," Computational Optimization and Applications, Springer, vol. 65(1), pages 47-71, September.
    3. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2022. "Two linear approximation algorithms for convex mixed integer nonlinear programming," Annals of Operations Research, Springer, vol. 316(2), pages 1471-1491, September.
    4. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2018. "Integrality gap minimization heuristics for binary mixed integer nonlinear programming," Journal of Global Optimization, Springer, vol. 71(3), pages 593-612, July.
    5. Marianna De Santis & Stefano Lucidi & Francesco Rinaldi, 2011. "A new class of functions for measuring solution integrality in the Feasibility Pump approach," DIS Technical Reports 2011-08, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    6. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    7. Renan Vicente Pinto & Nelson Maculan, 2023. "A new heuristic for the Euclidean Steiner Tree Problem in $${\mathbb {R}}^n$$ R n," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 391-413, July.
    8. Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.
    9. Tommy Andersson & Christer Andersson, 2009. "Solving House Allocation Problems with Risk-Averse Agents," Computational Economics, Springer;Society for Computational Economics, vol. 33(4), pages 389-401, May.
    10. Javier Cano & Javier M. Moguerza & Francisco J. Prieto, 2017. "Using Improved Directions of Negative Curvature for the Solution of Bound-Constrained Nonconvex Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 474-499, August.
    11. Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
    12. Terzi, Mourad & Ouazene, Yassine & Yalaoui, Alice & Yalaoui, Farouk, 2023. "Lot-sizing and pricing decisions under attraction demand models and multi-channel environment: New efficient formulations," Operations Research Perspectives, Elsevier, vol. 10(C).
    13. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
    14. Xiaoguang Chen & Hayri Önal, 2014. "An Economic Analysis of the Future U.S. Biofuel Industry, Facility Location, and Supply Chain Network," Transportation Science, INFORMS, vol. 48(4), pages 575-591, November.
    15. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    16. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    17. Zhang, Zijun & Zeng, Yaohui & Kusiak, Andrew, 2012. "Minimizing pump energy in a wastewater processing plant," Energy, Elsevier, vol. 47(1), pages 505-514.
    18. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    19. Abdolmaleki, Mojtaba & Shahabi, Mehrdad & Yin, Yafeng & Masoud, Neda, 2021. "Itinerary planning for cooperative truck platooning," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 91-110.
    20. Valerian Bulatov, 2010. "Methods of embedding-cutting off in problems of mathematical programming," Journal of Global Optimization, Springer, vol. 48(1), pages 3-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-018-2872-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.