IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i2d10.1007_s10845-020-01585-y.html
   My bibliography  Save this article

Data mining for fast and accurate makespan estimation in machining workshops

Author

Listed:
  • Lixin Cheng

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

  • Qiuhua Tang

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

  • Zikai Zhang

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

  • Shiqian Wu

    (Wuhan University of Science and Technology)

Abstract

The fast and accurate estimation of makespan is essential for the determination of the delivery date and the sustainable development of the enterprise. In this paper, a high-quality training dataset is constructed and an adaptive ensemble model is proposed to achieve fast and accurate makespan estimation. First, both the logistics features extracted by the Pearson correlation coefficient and the new meaningful nonlinear combination features dug out by gene expression programming are first involved in this paper for constructing a high-quality dataset. Secondly, an improved clustering with elbow criterion and a resampling operation are applied simultaneously to generate representative subsets; and correspondingly, several back propagation neural network (BPNN) with the architecture optimized by genetic algorithm are trained by these subsets respectively to generate effective diverse learners; and then, a K-nearest neighbor based dynamic weight combination strategy which is sensitive to current testing sample is proposed to make full use of the learner’s positive effects and avoid its negative effects. Finally, the results of effective experiments prove that both the newly involved features and the improvements in the proposed ensemble are effective. In addition, comparison experiments confirm that the proposed enhanced ensemble of BPNNs outperforms significantly the prevailing approaches, including single, ensemble and hybrid models. And hence, the proposed model can be utilized as a convenient and reliable tool to support customer order acceptance.

Suggested Citation

  • Lixin Cheng & Qiuhua Tang & Zikai Zhang & Shiqian Wu, 2021. "Data mining for fast and accurate makespan estimation in machining workshops," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 483-500, February.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01585-y
    DOI: 10.1007/s10845-020-01585-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01585-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01585-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H.M. Raaymakers, Wenny & Will M. Bertrand, J. & C. Fransoo, Jan, 2001. "Makespan estimation in batch process industries using aggregate resource and job set characteristics," International Journal of Production Economics, Elsevier, vol. 70(2), pages 145-161, March.
    2. Chaoqun Duan & Chao Deng & Abolfazl Gharaei & Jun Wu & Bingran Wang, 2018. "Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions," International Journal of Production Research, Taylor & Francis Journals, vol. 56(23), pages 7160-7178, December.
    3. Chen, Kunlong & Jiang, Jiuchun & Zheng, Fangdan & Chen, Kunjin, 2018. "A novel data-driven approach for residential electricity consumption prediction based on ensemble learning," Energy, Elsevier, vol. 150(C), pages 49-60.
    4. Xiao, Jianli, 2019. "SVM and KNN ensemble learning for traffic incident detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 29-35.
    5. Junliang Wang & Jie Zhang, 2016. "Big data analytics for forecasting cycle time in semiconductor wafer fabrication system," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7231-7244, December.
    6. Raaymakers, W. H. M. & Weijters, A. J. M. M., 2003. "Makespan estimation in batch process industries: A comparison between regression analysis and neural networks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 14-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
    2. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    3. Raaymakers, W. H. M. & Weijters, A. J. M. M., 2003. "Makespan estimation in batch process industries: A comparison between regression analysis and neural networks," European Journal of Operational Research, Elsevier, vol. 145(1), pages 14-30, February.
    4. Shijie Guo & Shufeng Tang & Dongsheng Zhang, 2019. "A Recognition Methodology for the Key Geometric Errors of a Multi-Axis Machine Tool Based on Accuracy Retentivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-21, November.
    5. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Hao, Hongchang & Ma, Zhe & Wang, Anjian & Xing, Wanli & Song, Hao & Zhao, Pei & Wei, Jiangqiao & Zheng, Shuxian, 2023. "Modeling and assessing the robustness of the lithium global trade system against cascading failures," Resources Policy, Elsevier, vol. 85(PB).
    7. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. Guiliang Gong & Raymond Chiong & Qianwang Deng & Qiang Luo, 2020. "A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1443-1466, August.
    9. Li, Yuni & Xiao, Jianli, 2020. "Traffic peak period detection using traffic index cloud maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    10. M. López-Campos & F. Kristjanpoller & P. Viveros & R. Pascual, 2018. "Reliability Assessment Methodology for Massive Manufacturing Using Multi-Function Equipment," Complexity, Hindawi, vol. 2018, pages 1-8, February.
    11. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    12. Junwei Ma & Xiao Liu & Xiaoxu Niu & Yankun Wang & Tao Wen & Junrong Zhang & Zongxing Zou, 2020. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    13. Nicholas Fiorentini & Massimo Losa, 2020. "Long-Term-Based Road Blackspot Screening Procedures by Machine Learning Algorithms," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
    14. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    15. Wenke Gao, 2020. "An extended geometric process and its application in replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 88-103, February.
    16. Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
    17. Xia, Tangbin & Si, Guojin & Shi, Guo & Zhang, Kaigan & Xi, Lifeng, 2022. "Optimal selective maintenance scheduling for series–parallel systems based on energy efficiency optimization," Applied Energy, Elsevier, vol. 314(C).
    18. Wakiru, James & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2021. "Integrated remanufacturing, maintenance and spares policies towards life extension of a multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    20. Ghorbani, Milad & Nourelfath, Mustapha & Gendreau, Michel, 2022. "A two-stage stochastic programming model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01585-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.