IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i1d10.1007_s10845-018-1430-y.html
   My bibliography  Save this article

A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment

Author

Listed:
  • Pai Zheng

    (Nanyang Technological University
    University of Auckland
    Nanyang Technological University)

  • Xun Xu

    (University of Auckland)

  • Chun-Hsien Chen

    (Nanyang Technological University)

Abstract

The rapid development of information and communication technology enables a promising market of information densely product, i.e. smart, connected product (SCP), and also changes the way of user–designer interaction in the product development process. For SCP, massive data generated by users drives its design innovation and somehow determines its final success. Nevertheless, most existing works only look at the new functionalities or values that are derived in the one-way communication by introducing novel data analytics methods. Few work discusses about an effective and systematic approach to enable individual user innovation in such context, i.e. co-development process, which sets the fundamental basis of the prevailing concept of data-driven design. Aiming to fill this gap, this paper proposes a generic data-driven cyber-physical approach for personalised SCP co-development in a cloud-based environment. A novel concept of smart, connected, open architecture product is hence introduced with a generic cyber-physical model established in a cloud-based environment, of which the interaction processes are enabled by co-development toolkits with smartness and connectedness. Both the personalized SCP modelling method and the establishment of its cyber-physical product model are described in details. To further demonstrate the proposed approach, a case study of a smart wearable device (i.e. i-BRE respiratory mask) development process is given with general discussions.

Suggested Citation

  • Pai Zheng & Xun Xu & Chun-Hsien Chen, 2020. "A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 3-18, January.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1430-y
    DOI: 10.1007/s10845-018-1430-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1430-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1430-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salvador, F. & Forza, C., 2004. "Configuring products to address the customization-responsiveness squeeze: A survey of management issues and opportunities," International Journal of Production Economics, Elsevier, vol. 91(3), pages 273-291, October.
    2. A. Mosallam & K. Medjaher & N. Zerhouni, 2016. "Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1037-1048, October.
    3. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    4. Kusiak, Andrew, 2009. "Innovation: A data-driven approach," International Journal of Production Economics, Elsevier, vol. 122(1), pages 440-448, November.
    5. Chie-Hyeon Lim & Min-Jun Kim & Jun-Yeon Heo & Kwang-Jae Kim, 2018. "Design of informatics-based services in manufacturing industries: case studies using large vehicle-related databases," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 497-508, March.
    6. Morgane Benade & Ingi Brown & Pascal Le Masson & Benoit Weil & Frank Piller, 2016. "How smart products with built in flexibility empower users to self - design the use: A theoretical framework for use generation," Post-Print hal-01481892, HAL.
    7. Trentin, Alessio & Perin, Elisa & Forza, Cipriano, 2012. "Product configurator impact on product quality," International Journal of Production Economics, Elsevier, vol. 135(2), pages 850-859.
    8. Du, Gang & Jiao, Roger J. & Chen, Mo, 2014. "Joint optimization of product family configuration and scaling design by Stackelberg game," European Journal of Operational Research, Elsevier, vol. 232(2), pages 330-341.
    9. Morgane Benade & Juliette Brun & Ingi Brown & Pascal Le Masson & Benoit Weil & Frank Piller, 2016. "How Smart Products with Built in Flexibility Empower Users to Self -Design Their Uses? A Theoretical Framework for Use Generation," Post-Print hal-01425828, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
    2. Wai Sze Yip & Suet To & Hongting Zhou, 2022. "Current status, challenges and opportunities of sustainable ultra-precision manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2193-2205, December.
    3. Yongjun Ji & Zuhua Jiang & Xinyu Li & Yongwen Huang & Fuhua Wang, 2023. "A multitask context-aware approach for design lesson-learned knowledge recommendation in collaborative product design," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1615-1637, April.
    4. Sihan Huang & Guoxin Wang & Shiqi Nie & Bin Wang & Yan Yan, 2023. "Part family formation method for delayed reconfigurable manufacturing system based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2849-2863, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Hou & Roger J. Jiao, 2020. "Data-informed inverse design by product usage information: a review, framework and outlook," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 529-552, March.
    2. Linda Zhang & Carman K.M. Lee & Pervaiz Akhtar, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," Post-Print hal-03276827, HAL.
    3. Hong-Sen Yan & Wen-Chao Li, 2017. "A multi-objective scheduling algorithm with self-evolutionary feature for job-shop-like knowledgeable manufacturing cell," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 337-351, February.
    4. Salembier, Chloé & Segrestin, Blanche & Berthet, Elsa & Weil, Benoît & Meynard, Jean-Marc, 2018. "Genealogy of design reasoning in agronomy: Lessons for supporting the design of agricultural systems," Agricultural Systems, Elsevier, vol. 164(C), pages 277-290.
    5. Zhang, Linda L. & Lee, Carman K.M. & Akhtar, Pervaiz, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," International Journal of Production Economics, Elsevier, vol. 229(C).
    6. Zhang, Linda L. & Shafiee, Sara, 2022. "Developing separate or integrated configurators? A longitudinal case study," International Journal of Production Economics, Elsevier, vol. 249(C).
    7. Adriana Andrea Amaya & Ying-Kai Liao & Sixto Chang, 2019. "The Effects Of Innovation Implementation And Speed To Market On The Relationship Between Team Sense-Making, Trust, And Npd Success," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(04), pages 1-29, May.
    8. Frank R. Lichtenberg, 2014. "Has Medical Innovation Reduced Cancer Mortality?," CESifo Economic Studies, CESifo Group, vol. 60(1), pages 135-177.
    9. Francesco Bogliacino & Mario Pianta, 2016. "The Pavitt Taxonomy, revisited: patterns of innovation in manufacturing and services," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 33(2), pages 153-180, August.
    10. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.
    11. Alhassan Abdul-Wakeel Karakara & Evans Osabuohien, 2020. "ICT adoption, competition and innovation of informal firms in West Africa: a comparative study of Ghana and Nigeria," Journal of Enterprising Communities: People and Places in the Global Economy, Emerald Group Publishing Limited, vol. 14(3), pages 397-414, June.
    12. Bharat Diwakar & Gilad Sorek, 2016. "Dynamics of Human Capital Accumulation, IPR Policy, and Growth," Auburn Economics Working Paper Series auwp2016-11, Department of Economics, Auburn University.
    13. Dana Benešová & Miroslav Hušek, 2019. "Factors for efficient use of information and communication technologies influencing sustainable position of service enterprises in Slovakia," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(3), pages 1182-1194, March.
    14. Marina Rybalka, 2015. "The innovative input mix. Assessing the importance of R&D and ICT investments for firm performance in manufacturing and services," Discussion Papers 801, Statistics Norway, Research Department.
    15. ManYing Kang & Marcel Ausloos, 2017. "An Inverse Problem Study: Credit Risk Ratings as a Determinant of Corporate Governance and Capital Structure in Emerging Markets: Evidence from Chinese Listed Companies," Economies, MDPI, vol. 5(4), pages 1-23, November.
    16. Xuebing Tang, 2012. "The Assessment on Environmental Value of Thermal Power in China," Business and Management Research, Business and Management Research, Sciedu Press, vol. 1(1), pages 115-120, March.
    17. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    18. Galasso, Alberto & Schankerman, Mark, 2013. "Patents and Cumulative Innovation:Causal Evidence from the Courts," IIR Working Paper 13-16, Institute of Innovation Research, Hitotsubashi University.
    19. Jos� Lobo & Charlotta Mellander & Kevin Stolarick & Deborah Strumsky, 2014. "The Inventive, the Educated and the Creative: How Do They Affect Metropolitan Productivity?," Industry and Innovation, Taylor & Francis Journals, vol. 21(2), pages 155-177, February.
    20. Laura Barbieri & Daniela Bragoli & Flavia Cortelezzi & Giovanni Marseguerra, 2015. "Public Support to Innovation Strategies," DISCE - Quaderni del Dipartimento di Scienze Economiche e Sociali dises1509, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1430-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.