IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i5d10.1007_s10845-017-1388-1.html
   My bibliography  Save this article

A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction

Author

Listed:
  • Yun Bai

    (Dongguan University of Technology
    Universidade do Algarve)

  • Zhenzhong Sun

    (Dongguan University of Technology)

  • Bo Zeng

    (Dongguan University of Technology)

  • Jianyu Long

    (Dongguan University of Technology)

  • Lin Li

    (Dongguan University of Technology)

  • José Valente Oliveira

    (Universidade do Algarve)

  • Chuan Li

    (Dongguan University of Technology)

Abstract

Manufacturing quality prediction model, as an effective measure to monitor the quality in advance, has been developed using various data-driven techniques. However, multi-parameter in multi-stage of the modern manufacturing industry brings about the curse of dimensionality, leading to the difficulties for feature extraction, learning and quality modeling. To address this issue, three dimension reduction techniques are investigated in this paper, i.e., principal component analysis (PCA), locally linear embedding (LLE), and isometric mapping (Isomap). Specifically, the PCA is a linear dimension reduction technique, the LLE is a nonlinear reduction technique with local perspective, and the Isomap is a nonlinear reduction technique from global perspective. After getting the low-dimensional information from the PCA, the LLE, and the Isomap methods respectively, a support vector machine (SVM) is utilized for modeling. To reveal the effectiveness of the dimension reduction techniques and compare the difference of the three dimension reduction techniques, two experimental manufacturing data are collected from a competition about manufacturing quality control in Tianchi Data Lab of China. The comparison experiments indicate that the dimension reduction techniques have capacity for improving the SVM modeling performance indeed, and the Isomap–SVM model with the nonlinear global dimension reduction outperforms all the candidate models in terms of qualitative and quantitative analysis.

Suggested Citation

  • Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:5:d:10.1007_s10845-017-1388-1
    DOI: 10.1007/s10845-017-1388-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1388-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1388-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ling-Jing Kao & Tian-Shyug Lee & Chi-Jie Lu, 2016. "A multi-stage control chart pattern recognition scheme based on independent component analysis and support vector machine," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 653-664, June.
    2. Kentaro Akashi & Naoto Kunitomo, 2015. "The limited information maximum likelihood approach to dynamic panel structural equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 39-73, February.
    3. Kentaro Akashi & Naoto Kunitomo, 2010. "The Limited Information Maximum Likelihood Approach to Dynamic Panel Structural Equations," CIRJE F-Series CIRJE-F-708, CIRJE, Faculty of Economics, University of Tokyo.
    4. Rubio, Ginés & Pomares, Héctor & Rojas, Ignacio & Herrera, Luis Javier, 2011. "A heuristic method for parameter selection in LS-SVM: Application to time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 725-739, July.
    5. Rubio, Ginés & Pomares, Héctor & Rojas, Ignacio & Herrera, Luis Javier, 2011. "A heuristic method for parameter selection in LS-SVM: Application to time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 725-739.
    6. Shujie Liu & Yawei Hu & Chao Li & Huitian Lu & Hongchao Zhang, 2017. "Machinery condition prediction based on wavelet and support vector machine," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1045-1055, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faping Zhang & Jialun Zhang & Junjiu Ma, 2023. "Data-manifold-based monitoring and anomaly diagnosis for manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3159-3177, October.
    2. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    3. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    4. Guoming Zeng & Maolan Zhang & Pei Gao & Jiale Wang & Da Sun, 2020. "Algicidal Efficiency and Genotoxic Effects of Phanerochaete chrysosporium against Microcystis aeruginosa," IJERPH, MDPI, vol. 17(11), pages 1-11, June.
    5. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    6. Mohamed Ismail & Noha A. Mostafa & Ahmed El-assal, 2022. "Quality monitoring in multistage manufacturing systems by using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2471-2486, December.
    7. Germán González Rodríguez & Jose M. Gonzalez-Cava & Juan Albino Méndez Pérez, 2020. "An intelligent decision support system for production planning based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1257-1273, June.
    8. Liu, Jinyuan & Wang, Shouxi & Wei, Nan & Qiao, Weibiao & Li, Ze & Zeng, Fanhua, 2023. "A clustering-based feature enhancement method for short-term natural gas consumption forecasting," Energy, Elsevier, vol. 278(PB).
    9. Jie Jian & Yu Guo & Lin Jiang & Yanyan An & Jiafu Su, 2019. "A Multi-Objective Optimization Model for Green Supply Chain Considering Environmental Benefits," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    10. Chia-Yen Lee & Chen-Fu Chien, 2022. "Pitfalls and protocols of data science in manufacturing practice," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1189-1207, June.
    11. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    12. Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
    2. Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
    3. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    4. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    5. Theophilos Papadimitriou & Periklis Gogas & Vasilios Plakandaras, 2016. "Testing Exchange Rate Models in a Small Open Economy: an SVR Approach," Bulletin of Applied Economics, Risk Market Journals, vol. 3(2), pages 9-29.
    6. Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
    7. Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
    8. Plakandaras, Vasilios & Gupta, Rangan & Wohar, Mark E., 2017. "The depreciation of the pound post-Brexit: Could it have been predicted?," Finance Research Letters, Elsevier, vol. 21(C), pages 206-213.
    9. Plakandaras, Vasilios & Gogas, Periklis & Papadimitriou, Theophilos & Gupta, Rangan, 2019. "A re-evaluation of the term spread as a leading indicator," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 476-492.
    10. Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou & Rangan Gupta, 2016. "The Term Premium as a Leading Macroeconomic Indicator," Working Papers 201613, University of Pretoria, Department of Economics.
    11. Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
    12. M. A. Ghorbani & R. Khatibi & V. Karimi & Zaher Mundher Yaseen & M. Zounemat-Kermani, 2018. "Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4201-4215, October.
    13. repec:ipg:wpaper:2014-473 is not listed on IDEAS
    14. Yongfu Huang & M. G. Quibria, 2013. "The Global Partnership for Inclusive Growth," WIDER Working Paper Series wp-2013-059, World Institute for Development Economic Research (UNU-WIDER).
    15. Andhi Indira Kusuma & Yi-Mei Huang, 2023. "Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1683-1699, April.
    16. Tao Zan & Zhihao Liu & Hui Wang & Min Wang & Xiangsheng Gao, 2020. "Control chart pattern recognition using the convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 703-716, March.
    17. Ahmed Maged & Min Xie, 2023. "Recognition of abnormal patterns in industrial processes with variable window size via convolutional neural networks and AdaBoost," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1941-1963, April.
    18. Deepam Goyal & Anurag Choudhary & B. S. Pabla & S. S. Dhami, 2020. "Support vector machines based non-contact fault diagnosis system for bearings," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1275-1289, June.
    19. Naoto Kunitomo & Kentaro Akashi, 2010. "An Aysmptotically Optimal Modification of the Panel LIML Estimation for Individual Heteroscedasticity," CIRJE F-Series CIRJE-F-780, CIRJE, Faculty of Economics, University of Tokyo.
    20. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    21. Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou & Rangan Gupta, 2017. "The Informational Content of the Term Spread in Forecasting the US Inflation Rate: A Nonlinear Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 109-121, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:5:d:10.1007_s10845-017-1388-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.