Advanced Search
MyIDEAS: Login

Proper rationalizability in lexicographic beliefs

Contents:

Author Info

  • Geir B. Asheim

    ()
    (Department of Economics, University of Oslo, P.O. Box 1095 Blindern, N-0317 Oslo, Norway Final version: December 2001)

Abstract

Proper consistency is defined by the property that each player takes all opponent strategies into account (is cautious) and deems one opponent strategy to be infinitely more likely than another if the opponent prefers the one to the other (respects preferences). When there is common certain belief of proper consistency, a most preferred strategy is properly rationalizable. Any strategy used with positive probability in a proper equilibrium is properly rationalizable. Only strategies that lead to the backward induction outcome are properly rationalizable in the strategic form of a generic perfect information game. Proper rationalizability can test the robustness of inductive procedures.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://link.springer.de/link/service/journals/00182/papers/2030004/20300453.pdf
Download Restriction: Access to the full text of the articles in this series is restricted

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 30 (2002)
Issue (Month): 4 ()
Pages: 453-478

as in new window
Handle: RePEc:spr:jogath:v:30:y:2002:i:4:p:453-478

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords: Rationalizability · backward induction · strategic form;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Asheim, Geir B. & Dufwenberg, Martin, 2000. "Amissibility and Common Belief," Research Papers in Economics 2000:6, Stockholm University, Department of Economics.
  2. Breitmoser, Yves & Tan, Jonathan H.W. & Zizzo, Daniel John, 2014. "On the beliefs off the path: Equilibrium refinement due to quantal response and level-k," Games and Economic Behavior, Elsevier, vol. 86(C), pages 102-125.
  3. Oikonomou, V.K. & Jost, J, 2013. "Periodic strategies and rationalizability in perfect information 2-Player strategic form games," MPRA Paper 48117, University Library of Munich, Germany.
  4. Brandenburger, Adam & Friedenberg, Amanda, 2010. "Self-admissible sets," Journal of Economic Theory, Elsevier, vol. 145(2), pages 785-811, March.
  5. Adam Brandenburger, 2007. "The power of paradox: some recent developments in interactive epistemology," International Journal of Game Theory, Springer, vol. 35(4), pages 465-492, April.
  6. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
  7. Perea, Andres, 2007. "Proper belief revision and equilibrium in dynamic games," Journal of Economic Theory, Elsevier, vol. 136(1), pages 572-586, September.
  8. Perea, Andrés, 2011. "An algorithm for proper rationalizability," Games and Economic Behavior, Elsevier, vol. 72(2), pages 510-525, June.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:30:y:2002:i:4:p:453-478. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.