IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i4d10.1007_s10898-020-00966-0.html
   My bibliography  Save this article

Data-driven distributionally robust chance-constrained optimization with Wasserstein metric

Author

Listed:
  • Ran Ji

    (George Mason University)

  • Miguel A. Lejeune

    (George Washington University)

Abstract

We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to all types of distributionally robust chance-constrained optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. For the uncertain probabilities (UP) case, we provide new mixed-integer linear programming reformulations for DRCCP problems. For the continuum of realizations case with random right-hand side, we propose an exact mixed-integer second-order cone programming (MISOCP) reformulation and a linear programming (LP) outer approximation. For the continuum of realizations (CR) case with random technology vector, we propose two MISOCP and LP outer approximations. We show that all proposed relaxations become exact reformulations when the decision variables are binary or bounded general integers. For DRCCP with individual chance constraint and random right-hand side under both the UP and CR cases, we also propose linear programming reformulations which need the ex-ante derivation of the worst-case value-at-risk via the solution of a finite series of linear programs determined via a bisection-type procedure. We evaluate the scalability and tightness of the proposed MISOCP and (MI)LP formulations on a distributionally robust chance-constrained knapsack problem.

Suggested Citation

  • Ran Ji & Miguel A. Lejeune, 2021. "Data-driven distributionally robust chance-constrained optimization with Wasserstein metric," Journal of Global Optimization, Springer, vol. 79(4), pages 779-811, April.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:4:d:10.1007_s10898-020-00966-0
    DOI: 10.1007/s10898-020-00966-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00966-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00966-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiwei Jiang & Yongpei Guan & Jean-Paul Watson, 2016. "Risk-averse stochastic unit commitment with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 48(9), pages 838-854, September.
    2. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    3. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    4. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    5. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    6. Weijun Xie & Shabbir Ahmed, 2020. "Bicriteria Approximation of Chance-Constrained Covering Problems," Operations Research, INFORMS, vol. 68(2), pages 516-533, March.
    7. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Yi & Wang, Jiawei & You, Shi & Li, Ximei & Bindner, Henrik W. & Münster, Marie, 2023. "Data-driven scheme for optimal day-ahead operation of a wind/hydrogen system under multiple uncertainties," Applied Energy, Elsevier, vol. 329(C).
    2. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    3. van der Laan, Niels & Teunter, Ruud H. & Romeijnders, Ward & Kilic, Onur A., 2022. "The data-driven newsvendor problem: Achieving on-target service-levels using distributionally robust chance-constrained optimization," International Journal of Production Economics, Elsevier, vol. 249(C).
    4. Yue Zhao & Zhi Chen & Zhenzhen Zhang, 2023. "Distributionally Robust Chance-Constrained p -Hub Center Problem," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1361-1382, November.
    5. Zhai, Junyi & Wang, Sheng & Guo, Lei & Jiang, Yuning & Kang, Zhongjian & Jones, Colin N., 2022. "Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    3. Guanglin Xu & Samuel Burer, 2018. "A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming," Computational Management Science, Springer, vol. 15(1), pages 111-134, January.
    4. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    5. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    6. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
    7. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    8. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    9. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    10. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    11. Bansal, Manish & Mehrotra, Sanjay, 2019. "On solving two-stage distributionally robust disjunctive programs with a general ambiguity set," European Journal of Operational Research, Elsevier, vol. 279(2), pages 296-307.
    12. Ren, Ke & Bidkhori, Hoda, 2023. "A study of data-driven distributionally robust optimization with incomplete joint data under finite support," European Journal of Operational Research, Elsevier, vol. 305(2), pages 754-765.
    13. Liu, Jia & Chen, Zhiping, 2018. "Time consistent multi-period robust risk measures and portfolio selection models with regime-switching," European Journal of Operational Research, Elsevier, vol. 268(1), pages 373-385.
    14. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    15. Yannan Chen & Hailin Sun & Huifu Xu, 2021. "Decomposition and discrete approximation methods for solving two-stage distributionally robust optimization problems," Computational Optimization and Applications, Springer, vol. 78(1), pages 205-238, January.
    16. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    17. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    18. Ch. Pflug, Georg & Timonina-Farkas, Anna & Hochrainer-Stigler, Stefan, 2017. "Incorporating model uncertainty into optimal insurance contract design," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 68-74.
    19. Jun Li & Yizhe Huang & Yan‐Fu Li & Shuming Wang, 2023. "Redundancy allocation under state‐dependent distributional uncertainty of component lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 930-950, March.
    20. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:4:d:10.1007_s10898-020-00966-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.