IDEAS home Printed from https://ideas.repec.org/a/spr/jenvss/v3y2013i3p297-305.html
   My bibliography  Save this article

The globalization of ecologically intensive aquaculture (1984–2008)

Author

Listed:
  • Stefano Longo
  • Brett Clark
  • Richard York

Abstract

Social structures influence the spread of aquaculture and the particular ecological demands of this industry, which mediate the prospects of fisheries conservation. We assessed the effects of trade in food and fisheries commodities, the level of economic development, aquaculture production, and human population on the expansion of ecologically intensive aquaculture within the global food system. In doing this, we created a conservative measure of ecologically intensive aquaculture. We then conducted cross-national panel regression analyses (1984–2008) of 90 nations to investigate the expansion of ecologically intensive aquaculture and its integration into the global food system. The results indicated positive significant relationships between ecologically intensive aquaculture practices and fisheries commodity exports, total trade in food commodities, GDP per capita, and population size. These findings suggest that the dynamics of the modern global food system, characterized by increasingly globalized production of natural resource intensive processes, have significantly shaped the development of modern aquaculture systems and their ecological consequences. Copyright AESS 2013

Suggested Citation

  • Stefano Longo & Brett Clark & Richard York, 2013. "The globalization of ecologically intensive aquaculture (1984–2008)," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 3(3), pages 297-305, September.
  • Handle: RePEc:spr:jenvss:v:3:y:2013:i:3:p:297-305
    DOI: 10.1007/s13412-013-0124-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13412-013-0124-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13412-013-0124-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    2. World Bank, 2012. "World Development Indicators 2012," World Bank Publications - Books, The World Bank Group, number 6014, December.
    3. World Bank, 2007. "Changing the Face of the Waters : The Promise and Challenge of Sustainable Aquaculture," World Bank Publications - Books, The World Bank Group, number 6908, December.
    4. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    5. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    6. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    2. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    3. Shahbaz, Muhammad & Solarin, Sakiru Adebola & Mahmood, Haider & Arouri, Mohamed, 2013. "Does financial development reduce CO2 emissions in Malaysian economy? A time series analysis," Economic Modelling, Elsevier, vol. 35(C), pages 145-152.
    4. Bo Yang & Minhaj Ali & Shujahat Haider Hashmi & Mohsin Shabir, 2020. "Income Inequality and CO 2 Emissions in Developing Countries: The Moderating Role of Financial Instability," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    5. Barra, Cristian & Zotti, Roberto, 2016. "Investigating the impact of national income on environmental pollution. International evidence," MPRA Paper 74149, University Library of Munich, Germany.
    6. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    7. Cristian Barra & Roberto Zotti, 2018. "Investigating the non-linearity between national income and environmental pollution: international evidence of Kuznets curve," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 179-210, January.
    8. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.
    9. Alexandra Soberon & Irene D’Hers, 2020. "The Environmental Kuznets Curve: A Semiparametric Approach with Cross-Sectional Dependence," JRFM, MDPI, vol. 13(11), pages 1-23, November.
    10. Auci, Sabrina & Castelli, Annalisa, 2011. "Pollution and economic growth: a maximum likelihood estimation of environmental Kuznets curve," MPRA Paper 53441, University Library of Munich, Germany.
    11. Xiang, Tao & Malik, Tariq H. & Nielsen, Klaus, 2020. "The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    12. Germani, Anna Rita & Morone, Piergiuseppe & Testa, Giuseppina, 2014. "Environmental justice and air pollution: A case study on Italian provinces," Ecological Economics, Elsevier, vol. 106(C), pages 69-82.
    13. Zhimin Zhou, 2019. "The Underground Economy and Carbon Dioxide (CO 2 ) Emissions in China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    14. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    15. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Carson, Richard T, 2009. "Searching for Empirical Regularity and Theoretical Structure: The Environmental Kuznets Curve," University of California at San Diego, Economics Working Paper Series qt4m6263c2, Department of Economics, UC San Diego.
    17. Szalavetz, Andrea, 2018. "Digitális átalakulás és fenntarthatóság. A technológiaoptimista környezetgazdászok és a pesszimista ökológiai közgazdászok közötti vita újraindítása [Digital transformation and environmental sustai," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1067-1088.
    18. Prathibha Joshi & Kris Aaron Beck, 2015. "Biological Oxygen Demand and Economic Growth: An Empirical Investigation," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(02), pages 1-15.
    19. Ulucak, Recep & Koçak, Emrah & Erdoğan, Seyfettin & Kassouri, Yacouba, 2020. "Investigating the non-linear effects of globalization on material consumption in the EU countries: Evidence from PSTR estimation," Resources Policy, Elsevier, vol. 67(C).
    20. Miguel Rodríguez & Yolanda Pena-Boquete, 2013. "Mishandling carbon intensities," Working Papers 1302, Universidade de Vigo, Departamento de Economía Aplicada.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jenvss:v:3:y:2013:i:3:p:297-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.