IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v9y2005i3d10.1007_s10878-005-1414-7.html
   My bibliography  Save this article

A Framework for the Complexity of High-Multiplicity Scheduling Problems

Author

Listed:
  • N. Brauner

    (Laboratoire Leibniz-IMAG)

  • Y. Crama

    (University of Liège)

  • A. Grigoriev

    (Maastricht University)

  • J. Klundert

    (Maastricht University)

Abstract

The purpose of this note is to propose a complexity framework for the analysis of high multiplicity scheduling problems. Part of this framework relies on earlier work aiming at the definition of output-sensitive complexity measures for the analysis of algorithms which produce “large” outputs. However, different classes emerge according as we look at schedules as sets of starting times, or as related single-valued mappings.

Suggested Citation

  • N. Brauner & Y. Crama & A. Grigoriev & J. Klundert, 2005. "A Framework for the Complexity of High-Multiplicity Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 9(3), pages 313-323, May.
  • Handle: RePEc:spr:jcomop:v:9:y:2005:i:3:d:10.1007_s10878-005-1414-7
    DOI: 10.1007/s10878-005-1414-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-005-1414-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-005-1414-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorit S. Hochbaum & Ron Shamir, 1991. "Strongly Polynomial Algorithms for the High Multiplicity Scheduling Problem," Operations Research, INFORMS, vol. 39(4), pages 648-653, August.
    2. Wieslaw Kubiak & Suresh Sethi, 1991. "A Note on "Level Schedules for Mixed-Model Assembly Lines in Just-in-Time Production Systems"," Management Science, INFORMS, vol. 37(1), pages 121-122, January.
    3. Michael Rothkopf, 1966. "Letter to the Editor—The Traveling Salesman Problem: On the Reduction of Certain Large Problems to Smaller Ones," Operations Research, INFORMS, vol. 14(3), pages 532-533, June.
    4. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Approach for Sequencing Groups of Identical Jobs," Operations Research, INFORMS, vol. 28(6), pages 1347-1359, December.
    5. M. E. Dyer, 1983. "The Complexity of Vertex Enumeration Methods," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 381-402, August.
    6. Amotz Bar-Noy & Randeep Bhatia & Joseph (Seffi) Naor & Baruch Schieber, 2002. "Minimizing Service and Operation Costs of Periodic Scheduling," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 518-544, August.
    7. John J. Clifford & Marc E. Posner, 2000. "High Multiplicity in Earliness-Tardiness Scheduling," Operations Research, INFORMS, vol. 48(5), pages 788-800, October.
    8. George Steiner & Scott Yeomans, 1993. "Level Schedules for Mixed-Model, Just-in-Time Processes," Management Science, INFORMS, vol. 39(6), pages 728-735, June.
    9. John Miltenburg, 1989. "Level Schedules for Mixed-Model Assembly Lines in Just-In-Time Production Systems," Management Science, INFORMS, vol. 35(2), pages 192-207, February.
    10. Alix Munier & Francis Sourd, 2003. "Scheduling chains on a single machine with non-negative time lags," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(1), pages 111-123, April.
    11. S. Thomas McCormick & Scott R. Smallwood & Frits C. R. Spieksma, 2001. "A Polynomial Algorithm for Multiprocessor Scheduling with Two Job Lengths," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 31-49, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lebacque, Vassilissa & Jost, Vincent & Brauner, Nadia, 2007. "Simultaneous optimization of classical objectives in JIT scheduling," European Journal of Operational Research, Elsevier, vol. 182(1), pages 29-39, October.
    2. Cheng, T.C.E. & Shafransky, Y. & Ng, C.T., 2016. "An alternative approach for proving the NP-hardness of optimization problems," European Journal of Operational Research, Elsevier, vol. 248(1), pages 52-58.
    3. Alexander Grigoriev & Vincent J. Kreuzen & Tim Oosterwijk, 2021. "Cyclic lot-sizing problems with sequencing costs," Journal of Scheduling, Springer, vol. 24(2), pages 123-135, April.
    4. S. Knust & N. V. Shakhlevich & S. Waldherr & C. Weiß, 2019. "Shop scheduling problems with pliable jobs," Journal of Scheduling, Springer, vol. 22(6), pages 635-661, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Jordan, Carsten, 1994. "Materialflußorientierte Produktionssteuerung bei Variantenfließfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 362, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Vergauwen, P.G.M.C. & Busser, K. & Rongen, P. & Verwaijen, R. & Vossen, D.J.L.H., 2001. "Cost accounting and pricing improvement at Helmond Print: using Xeikon digital colour printing equipment: a case study," Research Memorandum 028, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    3. Corominas, Albert & Kubiak, Wieslaw & Pastor, Rafael, 2010. "Mathematical programming modeling of the Response Time Variability Problem," European Journal of Operational Research, Elsevier, vol. 200(2), pages 347-357, January.
    4. Andreas Drexl & Alf Kimms, 2001. "Sequencing JIT Mixed-Model Assembly Lines Under Station-Load and Part-Usage Constraints," Management Science, INFORMS, vol. 47(3), pages 480-491, March.
    5. Bautista, Joaquin & Companys, Ramon & Corominas, Albert, 2000. "Note on cyclic sequences in the product rate variation problem," European Journal of Operational Research, Elsevier, vol. 124(3), pages 468-477, August.
    6. Steiner, George & Yeomans, Julian Scott, 1996. "Optimal level schedules in mixed-model, multi-level JIT assembly systems with pegging," European Journal of Operational Research, Elsevier, vol. 95(1), pages 38-52, November.
    7. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    8. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "The product rate variation problem and its relevance in real world mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 197(2), pages 818-824, September.
    9. Zhu, Jin & Ding, Fong-Yuen, 2000. "A transformed two-stage method for reducing the part-usage variation and a comparison of the product-level and part-level solutions in sequencing mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 127(1), pages 203-216, November.
    10. Mansouri, S. Afshin, 2005. "A Multi-Objective Genetic Algorithm for mixed-model sequencing on JIT assembly lines," European Journal of Operational Research, Elsevier, vol. 167(3), pages 696-716, December.
    11. Aigbedo, Henry, 2007. "An assessment of the effect of mass customization on suppliers' inventory levels in a JIT supply chain," European Journal of Operational Research, Elsevier, vol. 181(2), pages 704-715, September.
    12. Alexander Grigoriev & Vincent J. Kreuzen & Tim Oosterwijk, 2021. "Cyclic lot-sizing problems with sequencing costs," Journal of Scheduling, Springer, vol. 24(2), pages 123-135, April.
    13. Ding, Fong-Yuen & Zhu, Jin & Sun, Hui, 2006. "Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives," International Journal of Production Economics, Elsevier, vol. 102(1), pages 108-131, July.
    14. Giard, Vincent & Jeunet, Jully, 2010. "Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line," International Journal of Production Economics, Elsevier, vol. 123(2), pages 290-300, February.
    15. Klaus Jansen & Roberto Solis-Oba, 2011. "A Polynomial Time OPT + 1 Algorithm for the Cutting Stock Problem with a Constant Number of Object Lengths," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 743-753, November.
    16. Yavuz, Mesut & Tufekci, Suleyman, 2006. "A bounded dynamic programming solution to the batching problem in mixed-model just-in-time manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 841-862, October.
    17. Heike, G. & Ramulu, M. & Sorenson, E. & Shanahan, P. & Moinzadeh, K., 2001. "Mixed model assembly alternatives for low-volume manufacturing: The case of the aerospace industry," International Journal of Production Economics, Elsevier, vol. 72(2), pages 103-120, July.
    18. Bollapragada, Srinivas & Bussieck, Michael & Mallik, Suman, 2002. "Scheduling Commercial Videotapes in Broadcast Television," Working Papers 02-0127, University of Illinois at Urbana-Champaign, College of Business.
    19. Sourd, Francis, 2005. "Punctuality and idleness in just-in-time scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 739-751, December.
    20. Ioanna Makarouni & John Psarras & Eleftherios Siskos, 2015. "Interactive bicriterion decision support for a large scale industrial scheduling system," Annals of Operations Research, Springer, vol. 227(1), pages 45-61, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:9:y:2005:i:3:d:10.1007_s10878-005-1414-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.