IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v36y2019i3d10.1007_s00357-019-09337-1.html
   My bibliography  Save this article

A Framework for Quantifying Qualitative Responses in Pairwise Experiments

Author

Listed:
  • A. H. Al-Ibrahim

Abstract

Suppose an experiment is conducted on pairs of objects with outcome response a continuous variable measuring the interactions among the pairs. Furthermore, assume the response variable is hard to measure numerically but we may code its values into low and high levels of interaction (and possibly a third category in between if neither label applies). In this paper, we estimate the interaction values from the information contained in the coded data and the design structure of the experiment. A novel estimation method is introduced and shown to enjoy several optimal properties including maximum explained variance in the responses with minimum number of parameters and for any probability distribution underlying the responses. Furthermore, the interactions have the simple interpretation of correlation (in absolute value), size of error is estimable from the experiment, and only a single run of each pair is needed for the experiment. We also explore possible applications of the technique. Three applications are presented, one on protein interaction, a second on drug combination, and the third on machine learning. The first two applications are illustrated using real life data while for the third application, the data are generated via binary coding of an image.

Suggested Citation

  • A. H. Al-Ibrahim, 2019. "A Framework for Quantifying Qualitative Responses in Pairwise Experiments," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 471-492, October.
  • Handle: RePEc:spr:jclass:v:36:y:2019:i:3:d:10.1007_s00357-019-09337-1
    DOI: 10.1007/s00357-019-09337-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-019-09337-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-019-09337-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A.H. Al-Ibrahim, 2015. "The Analysis of Multivariate Data Using Semi-Definite Programming," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 382-413, October.
    2. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    3. Michel Tenenhaus & Forrest Young, 1985. "An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 91-119, March.
    4. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline Meulman, 1992. "The integration of multidimensional scaling and multivariate analysis with optimal transformations," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 539-565, December.
    2. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    3. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    4. Karim Abou-Moustafa & Frank P. Ferrie, 2018. "Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 341-363, June.
    5. Fernández, Xosé Luis & Coto-Millán, Pablo & Díaz-Medina, Benito, 2018. "The impact of tourism on airport efficiency: The Spanish case," Utilities Policy, Elsevier, vol. 55(C), pages 52-58.
    6. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    7. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    8. J. Ramsay, 1969. "Some statistical considerations in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 167-182, June.
    9. Peter Schönemann, 1968. "On two-sided orthogonal procrustes problems," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 19-33, March.
    10. Massimiliano Agovino & Maria Ferrara & Antonio Garofalo, 2017. "The driving factors of separate waste collection in Italy: a multidimensional analysis at provincial level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2297-2316, December.
    11. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    12. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
    13. Warren Torgerson, 1965. "Multidimensional scaling of similarity," Psychometrika, Springer;The Psychometric Society, vol. 30(4), pages 379-393, December.
    14. Pepermans, Roland & Verleye, Gino, 1998. "A unified Europe? How euro-attitudes relate to psychological differences between countries," Journal of Economic Psychology, Elsevier, vol. 19(6), pages 681-699, December.
    15. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    16. Verniest, Fabien & Greulich, Sabine, 2019. "Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review," Ecological Modelling, Elsevier, vol. 414(C).
    17. Charles Sherman, 1972. "Nonmetric multidimensional scaling: A monte carlo study of the basic parameters," Psychometrika, Springer;The Psychometric Society, vol. 37(3), pages 323-355, September.
    18. Duncan Fong & Wayne DeSarbo & Zhe Chen & Zhuying Xu, 2015. "A Bayesian Vector Multidimensional Scaling Procedure Incorporating Dimension Reparameterization with Variable Selection," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 1043-1065, December.
    19. Bert Green, 1966. "The computer revolution in psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 437-445, December.
    20. Brain, M.J & Nahuelhual, L. & Gelcich, S. & Bozzeda, F., 2020. "Marine conservation may not deliver ecosystem services and benefits to all: Insights from Chilean Patagonia," Ecosystem Services, Elsevier, vol. 45(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:36:y:2019:i:3:d:10.1007_s00357-019-09337-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.