IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i2d10.1007_s13198-020-00956-1.html
   My bibliography  Save this article

Mixed model two sided assembly line balancing problem: an exact solution approach

Author

Listed:
  • Ashish Yadav

    (PDPM Indian Institute of Information Technology Design and Manufacturing)

  • Pawan Verma

    (PDPM Indian Institute of Information Technology Design and Manufacturing)

  • Sunil Agrawal

    (PDPM Indian Institute of Information Technology Design and Manufacturing)

Abstract

Mixed model two-sided assembly line balancing problem (MTALBP) is realized in plants delivering a high volume of big sizes products such as cars or trucks to increase space utilization. In MTALBP there is a procedure of introducing two single stations in each position left and right of the assembly line for the combined product model. In this paper, the proposed objective function is to maximize the workload at each station such that the number of stations is minimized. Since the problem is well known as NP hard, benchmark problems of MTALBP are solved using branch and bound algorithm on Lingo 16 solver. The proposed mathematical model is solved with benchmark test problems mentioned in research papers and applied to solve the case study problem of a turbocharger assembly line plant. The experimental results of the case study problem show that line efficiency is obtained 86.50% for model A and 80.75% for model B and the number of single and mated stations of the assembly line is close to the theoretical minimum number of stations. Results indicate that applying boundary conditions reduce the computational time to solve the case study problem as well as minimizes the number of stations, reduces idle time and reduces the length of the assembly line for the MTALBP.

Suggested Citation

  • Ashish Yadav & Pawan Verma & Sunil Agrawal, 2020. "Mixed model two sided assembly line balancing problem: an exact solution approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 335-348, July.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-020-00956-1
    DOI: 10.1007/s13198-020-00956-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-020-00956-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-020-00956-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    2. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    3. Yılmaz Delice & Emel Kızılkaya Aydoğan & Uğur Özcan & Mehmet Sıtkı İlkay, 2017. "A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 23-36, January.
    4. D. E. Ighravwe & S. A. Oke & K. A. Adebiyi, 2017. "Preventive maintenance task balancing with spare parts optimisation via big-bang big-crunch algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 811-822, November.
    5. J. Mukund Nilakantan & Zixiang Li & Qiuhua Tang & Peter Nielsen, 2017. "MILP models and metaheuristic for balancing and sequencing of mixed-model two-sided assembly lines," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 11(3), pages 353-379.
    6. Xiaofeng, Hu & Erfei, Wu & Jinsong, Bao & Ye, Jin, 2010. "A branch-and-bound algorithm to minimize the line length of a two-sided assembly line," European Journal of Operational Research, Elsevier, vol. 206(3), pages 703-707, November.
    7. .Ilker Baybars, 1986. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem," Management Science, INFORMS, vol. 32(8), pages 909-932, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohd Fadzil Faisae Ab Rashid & Nik Mohd Zuki Nik Mohamed & Ahmad Nasser Mohd Rose, 2022. "Multi-objective multi-verse optimiser for integrated two-sided assembly sequence planning and line balancing," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 850-876, August.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Hemant Sharma & Nagendra Sohani & Ashish Yadav, 2023. "A fuzzy SWARA-WASPAS based approach for determining the role of lean practices in enabling the supply chain agility," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 492-511, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    2. Minghai Yuan & Hongyan Yu & Jinting Huang & Aimin Ji, 2019. "Reconfigurable assembly line balancing for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2391-2405, August.
    3. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    4. Moreira, Mayron César O. & Costa, Alysson M., 2013. "Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers," International Journal of Production Economics, Elsevier, vol. 141(2), pages 552-560.
    5. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    6. Ece Sancı & Meral Azizoğlu, 2017. "Rebalancing the assembly lines: exact solution approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5991-6010, October.
    7. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    8. Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
    9. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    10. Manuel Chica & Joaquín Bautista & Jesica de Armas, 2019. "Benefits of robust multiobjective optimization for flexible automotive assembly line balancing," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 75-103, March.
    11. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    12. Scholl, Armin & Boysen, Nils, 2009. "Designing parallel assembly lines with split workplaces: Model and optimization procedure," International Journal of Production Economics, Elsevier, vol. 119(1), pages 90-100, May.
    13. Chica, Manuel & Cordón, Óscar & Damas, Sergio & Bautista, Joaquín, 2013. "A robustness information and visualization model for time and space assembly line balancing under uncertain demand," International Journal of Production Economics, Elsevier, vol. 145(2), pages 761-772.
    14. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    15. Parames Chutima, 2022. "A comprehensive review of robotic assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 1-34, January.
    16. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    17. Klindworth, Hanne & Otto, Christian & Scholl, Armin, 2012. "On a learning precedence graph concept for the automotive industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 259-269.
    18. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    19. Yılmaz Delice & Emel Kızılkaya Aydoğan & Uğur Özcan & Mehmet Sıtkı İlkay, 2017. "Balancing two-sided U-type assembly lines using modified particle swarm optimization algorithm," 4OR, Springer, vol. 15(1), pages 37-66, March.
    20. Becker, Christian & Scholl, Armin, 2009. "Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure," European Journal of Operational Research, Elsevier, vol. 199(2), pages 359-374, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-020-00956-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.