IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v21y2022i3d10.1007_s10700-021-09369-6.html
   My bibliography  Save this article

An innovative unification process for probabilistic hesitant fuzzy elements and its application to decision making

Author

Listed:
  • Bahram Farhadinia

    (Quchan University of Technology)

Abstract

The probabilistic hesitant fuzzy element (PHFE) is a worthwhile extension of hesitant fuzzy element (HFE) which is a means of allowing the decision makers more flexibility in expressing their preferences by the use of hesitant information in practical decision making process. To derive a more realistic expression of decision information, it is necessary to unify the arrangement of elements in PHFEs without imposing artificial elements. Up to now, several processes concerning the unification and arrangement of elements in PHFEs have been proposed, and while, most suffer from different drawbacks being critically discussed in the present study. The main aim of this study is to propose a PHFE unification process which does not have the shortcomings of existing processes, and does not change the inherent characteristic of PHFE probabilities. Based on the proposed unification process, the current study seeks to extend the theory of arithmetic operations on PHFEs by proposing and developing novel types of PHFS division and subtraction. Finally, the proposed PHFE unification process is applied to a number of multiple criteria decision-making (MCDM) problems for illustrating its vast range of applicability.

Suggested Citation

  • Bahram Farhadinia, 2022. "An innovative unification process for probabilistic hesitant fuzzy elements and its application to decision making," Fuzzy Optimization and Decision Making, Springer, vol. 21(3), pages 335-382, September.
  • Handle: RePEc:spr:fuzodm:v:21:y:2022:i:3:d:10.1007_s10700-021-09369-6
    DOI: 10.1007/s10700-021-09369-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-021-09369-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-021-09369-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huchang Liao & Xiaomei Mi & Zeshui Xu, 2020. "A survey of decision-making methods with probabilistic linguistic information: bibliometrics, preliminaries, methodologies, applications and future directions," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 81-134, March.
    2. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    3. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    4. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    5. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    6. Wu, Xingli & Liao, Huchang, 2021. "Modeling personalized cognition of customers in online shopping," Omega, Elsevier, vol. 104(C).
    7. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    8. Abbas Keramati & Fatemeh Shapouri, 2016. "Multidimensional appraisal of customer relationship management: integrating balanced scorecard and multi criteria decision making approaches," Information Systems and e-Business Management, Springer, vol. 14(2), pages 217-251, May.
    9. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    10. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    11. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    12. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    13. Alamoodi, A.H. & Zaidan, B.B. & Zaidan, A.A. & Albahri, O.S. & Chen, Juliana & Chyad, M.A. & Garfan, Salem & Aleesa, A.M., 2021. "Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    14. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    15. Sirirat Sae Lim & Hong Ngoc Nguyen & Chia-Li Lin, 2022. "Exploring the Development Strategies of Science Parks Using the Hybrid MCDM Approach," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    16. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    17. Zeynep Gamze Mert & Gülşen Akman, 2011. "The Profile of the Organized Industrial Zones in Kocaeli/TURKEY," ERSA conference papers ersa11p1137, European Regional Science Association.
    18. Olga A. Shvetsova & Elena A. Rodionova & Michael Z. Epstein, 2018. "Evaluation of investment projects under uncertainty: multi-criteria approach using interval data," Post-Print hal-01858557, HAL.
    19. Kuang-Hua Hu & Fu-Hsiang Chen & Gwo-Hshiung Tzeng, 2016. "Evaluating the Improvement of Sustainability of Sports Industry Policy Based on MADM," Sustainability, MDPI, vol. 8(7), pages 1-21, June.
    20. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Reprint of “Green decision-making model in reverse logistics using FUZZY-VIKOR method”," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 334-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:21:y:2022:i:3:d:10.1007_s10700-021-09369-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.