IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v31y2019i2d10.1007_s10696-018-9312-3.html
   My bibliography  Save this article

Evaluation of the flow of goods at a warehouse logistic department by Petri Nets

Author

Listed:
  • Carolina Gerini

    (University of Genoa)

  • Anna Sciomachen

    (University of Genoa)

Abstract

This paper addresses the analysis issue of the complex interactions arising among different components of a warehouse logistic system. In particular, the focus is on a case study related to the handling operations required by the flow of goods within a store of Ikea, located in the center of Italy. The proposed study has been performed using Petri Nets (PNs) as discrete event modelling and simulation framework. In particular, this paper aims to bring out the innovative aspect of the use of PNs as tools to support the functional specifications of warehouse systems, highlighting their strengths and weakness. The goal is to emphasize critical factors in the entire logistic chain within the store and suggest solutions for improving its efficiency. In this regards, PNs have been proved to be quite suitable to easily represent the main features of the departments under consideration, showing at the same time the main logistic processes in which both labor and equipment are involved. The dynamics of the considered logistic system is evaluated, focusing on the three main operating cycles implemented at the Ikea store under consideration. Further, simulating directly the PN model, along with a quantitative analysis, has been possible to identify delays in the complete logistic chain and determine performance indices, such as utilization rate of the resources. Suggestions for improving the productivity of the system are given.

Suggested Citation

  • Carolina Gerini & Anna Sciomachen, 2019. "Evaluation of the flow of goods at a warehouse logistic department by Petri Nets," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 354-380, June.
  • Handle: RePEc:spr:flsman:v:31:y:2019:i:2:d:10.1007_s10696-018-9312-3
    DOI: 10.1007/s10696-018-9312-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-018-9312-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-018-9312-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, H.Y. & Choy, K.L. & Ho, G.T.S. & Cheng, Stephen W.Y. & Lee, C.K.M., 2015. "A knowledge-based logistics operations planning system for mitigating risk in warehouse order fulfillment," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 763-779.
    2. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-02313400, HAL.
    3. Fukunari, Miki & Malmborg, Charles J., 2009. "A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 152-167, February.
    4. Renko, Sanda & Ficko, Dejan, 2010. "New logistics technologies in improving customer value in retailing service," Journal of Retailing and Consumer Services, Elsevier, vol. 17(3), pages 216-223.
    5. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    6. Zou, Bipan & Xu, Xianhao & (Yale) Gong, Yeming & De Koster, René, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," European Journal of Operational Research, Elsevier, vol. 254(1), pages 51-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    2. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    3. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    4. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    5. Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
    6. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    7. Liu, Tian & Gong, Yeming & De Koster, René B.M., 2018. "Travel time models for split-platform automated storage and retrieval systems," International Journal of Production Economics, Elsevier, vol. 197(C), pages 197-214.
    8. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    9. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    10. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    11. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    12. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    13. Yanyan Wang & Jinning Qin & Shandong Mou & Ke Huang & Xiaofeng Zhao, 2023. "DSS approach for sustainable system design of shuttle-based storage and retrieval systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 698-726, September.
    14. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.
    15. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Azadeh, K. & Roy, D. & de Koster, M.B.M., 2016. "Vertical or Horizontal Transport? - Comparison of robotic storage and retrieval systems," ERIM Report Series Research in Management ERS-2016-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    18. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    19. Martin Epp & Simon Wiedemann & Kai Furmans, 2017. "A discrete-time queueing network approach to performance evaluation of autonomous vehicle storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 960-978, February.
    20. Manivasakan, Hesavar & Kalra, Riddhi & O'Hern, Steve & Fang, Yihai & Xi, Yinfei & Zheng, Nan, 2021. "Infrastructure requirement for autonomous vehicle integration for future urban and suburban roads – Current practice and a case study of Melbourne, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 36-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:31:y:2019:i:2:d:10.1007_s10696-018-9312-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.