IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v31y2019i1d10.1007_s10696-017-9302-x.html
   My bibliography  Save this article

Simulation-based optimization approach for simultaneous scheduling of vehicles and machines with processing time uncertainty in FMS

Author

Listed:
  • James T. Lin

    (National Tsing Hua University)

  • Chun-Chih Chiu

    (National Tsing Hua University)

  • Yu-Hsiang Chang

    (National Tsing Hua University)

Abstract

Many stochastic factors, such as vehicle congestion, deadlock or conflict, or stochastic processing time have significant effects on performance in scheduling problem in flexible manufacturing system (FMS). This paper proposed a simulation-based optimization, L-GAOCBA, to address the simultaneous scheduling of vehicles and machines in FMS. The simulation model is constructed to evaluate the performance of scheduling decision, and includes stochastic elements, such as vehicle congestion, deadlock, and uncertain processing time. Genetic algorithm (GA) combined with local search, L-GA, plays important role in exploring the good design alternative based on simulation output. Optimal computing budget allocation (OCBA) embedded with L-GA is used to allocate the number of replications for reducing simulation replications. The design of experiments is used to analyze and set the parameters of L-GA and OCBA. This study shows that L-GAOCBA is superior for enhancing solution quality and search efficiency.

Suggested Citation

  • James T. Lin & Chun-Chih Chiu & Yu-Hsiang Chang, 2019. "Simulation-based optimization approach for simultaneous scheduling of vehicles and machines with processing time uncertainty in FMS," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 104-141, March.
  • Handle: RePEc:spr:flsman:v:31:y:2019:i:1:d:10.1007_s10696-017-9302-x
    DOI: 10.1007/s10696-017-9302-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-017-9302-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-017-9302-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lacomme, Philippe & Larabi, Mohand & Tchernev, Nikolay, 2013. "Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Economics, Elsevier, vol. 143(1), pages 24-34.
    2. Ümit Bilge & Gündüz Ulusoy, 1995. "A Time Window Approach to Simultaneous Scheduling of Machines and Material Handling System in an FMS," Operations Research, INFORMS, vol. 43(6), pages 1058-1070, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Maria Zanchettin, 2022. "Robust scheduling and dispatching rules for high-mix collaborative manufacturing systems," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 293-316, June.
    2. Kaustav Kundu & Martin J. Land & Alberto Portioli-Staudacher & Jos A. C. Bokhorst, 2021. "Order review and release in make-to-order flow shops: analysis and design of new methods," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 750-782, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    2. James T. Lin & Chun-Chih Chiu & Edward Huang & Hung-Ming Chen, 2018. "A Multi-Fidelity Model Approach for Simultaneous Scheduling of Machines and Vehicles in Flexible Manufacturing Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
    3. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    4. Moussa Abderrahim & Abdelghani Bekrar & Damien Trentesaux & Nassima Aissani & Karim Bouamrane, 2020. "Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints," Energies, MDPI, vol. 13(18), pages 1-19, September.
    5. Quang-Vinh Dang & Cong Thanh Nguyen & Hana Rudová, 2019. "Scheduling of mobile robots for transportation and manufacturing tasks," Journal of Heuristics, Springer, vol. 25(2), pages 175-213, April.
    6. Olatunde T. Baruwa & Miquel A. Piera, 2016. "A coloured Petri net-based hybrid heuristic search approach to simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4773-4792, August.
    7. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    8. Jianxun Li & Wenjie Cheng & Kin Keung Lai & Bhagwat Ram, 2022. "Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    9. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    10. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    11. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    12. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    13. Le-Anh, T. & de Koster, M.B.M., 2004. "A Review Of Design And Control Of Automated Guided Vehicle Systems," ERIM Report Series Research in Management ERS;2004-030-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Sunil Prayagi & Padma Lalitha Mareddy & Lakshmi Narasimhamu Katta & Sivarami Reddy Narapureddy, 2023. "Optimum Scheduling of a Multi-Machine Flexible Manufacturing System Considering Job and Tool Transfer Times without Tool Delay," Mathematics, MDPI, vol. 11(19), pages 1-37, October.
    16. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    17. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    18. Mohammad Reza Komari Alaei & Mehmet Soysal & Atabak Elmi & Audrius Banaitis & Nerija Banaitiene & Reza Rostamzadeh & Shima Javanmard, 2021. "A Bender’s Algorithm of Decomposition Used for the Parallel Machine Problem of Robotic Cell," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
    19. Marie-Laure Espinouse & Grzegorz Pawlak & Malgorzata Sterna, 2017. "Complexity of Scheduling Problem in Single-Machine Flexible Manufacturing System with Cyclic Transportation and Unlimited Buffers," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 1042-1054, June.
    20. Hurink, Johann & Knust, Sigrid, 2005. "Tabu search algorithms for job-shop problems with a single transport robot," European Journal of Operational Research, Elsevier, vol. 162(1), pages 99-111, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:31:y:2019:i:1:d:10.1007_s10696-017-9302-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.