Advanced Search
MyIDEAS: Login to save this article or follow this journal

Fast accurate binomial pricing


Author Info

  • L.C.G. Rogers

    (University of Bath, School of Mathematical Sciences, Bath BA2 7AY, Great Britain)

  • E.J. Stapleton

    (University of Bath, School of Mathematical Sciences, Bath BA2 7AY, Great Britain)


We discuss here an alternative interpretation of the familiar binomial lattice approach to option pricing, illustrating it with reference to pricing of barrier options, one- and two-sided, with fixed, moving or partial barriers, and also the pricing of American put options. It has often been observed that if one tries to price a barrier option using a binomial lattice, then one can find slow convergence to the true price unless care is taken over the placing of the grid points in the lattice; see, for example, the work of Boyle & Lau [2]. The placing of grid points is critical whether one uses a dynamic programming approach, or a Monte Carlo approach, and this can make it difficult to compute hedge ratios, for example. The problems arise from translating a crossing of the barrier for the continuous diffusion process into an event for the binomial approximation. In this article, we show that it is not necessary to make clever choices of the grid positioning, and by interpreting the nature of the binomial approximation appropriately, we are able to derive very quick and accurate pricings of barrier options. The interpretation we give here is applicable much more widely, and helps to smooth out the `odd-even' ripples in the option price as a function of time-to-go which are a common feature of binomial lattice pricing.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: Access to the full text of the articles in this series is restricted

File URL:
Download Restriction: Access to the full text of the articles in this series is restricted

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Finance and Stochastics.

Volume (Year): 2 (1997)
Issue (Month): 1 ()
Pages: 3-17

as in new window
Handle: RePEc:spr:finsto:v:2:y:1997:i:1:p:3-17

Note: received: November 1996; final version received: April 1997
Contact details of provider:
Web page:

Order Information:

Related research

Keywords: Binomial pricing; barrier option; American option; Brownian motion;

Find related papers by JEL classification:


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Leisen, Dietmar, 1997. "The Random-Time Binomial Model," Discussion Paper Serie B 399, University of Bonn, Germany.
  2. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, Elsevier, vol. 24(11-12), pages 1783-1827, October.
  3. B. Gao J. Huang, . "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires, New York University, Leonard N. Stern School of Business- 99-002, New York University, Leonard N. Stern School of Business-.
  4. Emmanuel Gobet, 2009. "Advanced Monte Carlo methods for barrier and related exotic options," Post-Print hal-00319947, HAL.
  5. Yan Dolinsky & Yuri Kifer, 2009. "Binomial Approximations for Barrier Options of Israeli Style," Papers 0907.4136,
  6. Yuri Kifer, 2006. "Error estimates for binomial approximations of game options," Papers math/0607123,


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:2:y:1997:i:1:p:3-17. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.