IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i5d10.1007_s10668-020-00929-1.html
   My bibliography  Save this article

Sustainability assessment of urban residential consumption in China megacity

Author

Listed:
  • Ying Qu

    (Dalian University of Technology)

  • Yue Liu

    (Dalian University of Technology)

  • Wenhua Wang

    (Dalian University of Technology)

  • Yaodong Cang

    (Dalian University of Technology)

Abstract

Sustainability is enduring unprecedented challenges, driven by exponential population growth and people’s ever-growing need for a better life. These increasing material and cultural needs have limited human's capability to protect ecosystems. Sustainability assessment is widely used as an effective tool to evaluate current state and propose target measure adjustment. This study constructs a series of indicators on sustainability assessment of urban residential consumption by using emergy ecological footprint method. It is applied to 17 Chinese megacities sustainability assessment of urban residential consumption from 2007 to 2016. The results showed that ecological deficit mainly exists in Jing-Jin-Ji, Yangtze River Delta region and Pearl River Delta region with developed economy. This study divided 17 megacities into four categories, including Shanghai type, Chongqing type, Suzhou type and Xian type, to help government make appropriate policies based on the local conditions.

Suggested Citation

  • Ying Qu & Yue Liu & Wenhua Wang & Yaodong Cang, 2021. "Sustainability assessment of urban residential consumption in China megacity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7509-7523, May.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00929-1
    DOI: 10.1007/s10668-020-00929-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00929-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00929-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying QU & Yue LIU, 2017. "Evaluating the low-carbon development of urban China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 939-953, June.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Yue Liu & Ying Qu & Zhen Lei & Han Jia, 2017. "Understanding the Evolution of Sustainable Consumption Research," Sustainable Development, John Wiley & Sons, Ltd., vol. 25(5), pages 414-430, September.
    4. Arnold Tukker & Maurie J. Cohen & Klaus Hubacek & Oksana Mont, 2010. "The Impacts of Household Consumption and Options for Change," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 13-30, January.
    5. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    6. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    7. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    8. Pulselli, Federico M. & Coscieme, Luca & Bastianoni, Simone, 2011. "Ecosystem services as a counterpart of emergy flows to ecosystems," Ecological Modelling, Elsevier, vol. 222(16), pages 2924-2928.
    9. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    10. Chuxiong Deng & Zhen Liu & Rongrong Li & Ke Li, 2018. "Sustainability Evaluation Based on a Three-Dimensional Ecological Footprint Model: A Case Study in Hunan, China," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    11. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    2. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    3. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    4. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    5. Johanna Kramm & Melanie Pichler & Anke Schaffartzik & Martin Zimmermann, 2017. "Societal Relations to Nature in Times of Crisis—Social Ecology’s Contributions to Interdisciplinary Sustainability Studies," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
    6. Mach, Radomír & Weinzettel, Jan & Ščasný, Milan, 2018. "Environmental Impact of Consumption by Czech Households: Hybrid Input–Output Analysis Linked to Household Consumption Data," Ecological Economics, Elsevier, vol. 149(C), pages 62-73.
    7. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    8. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    9. Niu, Honglei & Lekse, William, 2018. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-31.
    10. Wei Sun & Junli Li & Wenxi Qu, 2022. "Sustainability evolution and factors based on ecological footprint: A case study of Rizhao, China," Growth and Change, Wiley Blackwell, vol. 53(1), pages 132-150, March.
    11. Jingxia Chai & Yu Hao & Haitao Wu & Yuemiao Yang, 2021. "Do constraints created by economic growth targets benefit sustainable development? Evidence from China," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 4188-4205, December.
    12. Yang, Qing & Liu, Gengyuan & Casazza, Marco & Campbell, Elliot T. & Giannetti, Biagio F. & Brown, Mark T., 2018. "Development of a new framework for non-monetary accounting on ecosystem services valuation," Ecosystem Services, Elsevier, vol. 34(PA), pages 37-54.
    13. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    14. Ana Carolina V. Nadalini & Ricardo de Araujo Kalid & Ednildo Andrade Torres, 2021. "Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    15. Pingxing Li & Wei Sun, 2018. "Temporal Evolution and Influencing Factors of Energy Consumption and Related Carbon Emissions from the Perspective of Industrialization and Urbanization in Shanghai, China," Sustainability, MDPI, vol. 10(9), pages 1-13, August.
    16. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    17. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
    18. Ziyi Han & Ruifeng Zhao & Lihua Zhang & Xidong Chen & Jingfa Wang & Haitian Lu & Fushou Liu, 2024. "Evaluation and Driving Forces of Ecosystem Service Change in Maqu Alpine Wetland: An Emergy Approach," Land, MDPI, vol. 13(3), pages 1-17, March.
    19. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    20. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00929-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.