IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v12y2022i1d10.1007_s13235-021-00403-1.html
   My bibliography  Save this article

Dynamic Games of Social Distancing During an Epidemic: Analysis of Asymmetric Solutions

Author

Listed:
  • Ioannis Kordonis

    (National Technical University of Athens)

  • Athanasios-Rafail Lagos

    (National Technical University of Athens)

  • George P. Papavassilopoulos

    (National Technical University of Athens
    University of Southern California)

Abstract

Individual behaviors play an essential role in the dynamics of transmission of infectious diseases, including COVID-19. This paper studies a dynamic game model that describes the social distancing behaviors during an epidemic, assuming a continuum of players and individual infection dynamics. The evolution of the players’ infection states follows a variant of the well-known SIR dynamics. We assume that the players are not sure about their infection state, and thus, they choose their actions based on their individually perceived probabilities of being susceptible, infected, or removed. The cost of each player depends both on her infection state and on the contact with others. We prove the existence of a Nash equilibrium and characterize Nash equilibria using nonlinear complementarity problems. We then exploit some monotonicity properties of the optimal policies to obtain a reduced-order characterization for Nash equilibrium and reduce its computation to the solution of a low-dimensional optimization problem. It turns out that, even in the symmetric case, where all the players have the same parameters, players may have very different behaviors. We finally present some numerical studies that illustrate this interesting phenomenon and investigate the effects of several parameters, including the players’ vulnerability, the time horizon, and the maximum allowed actions, on the optimal policies and the players’ costs.

Suggested Citation

  • Ioannis Kordonis & Athanasios-Rafail Lagos & George P. Papavassilopoulos, 2022. "Dynamic Games of Social Distancing During an Epidemic: Analysis of Asymmetric Solutions," Dynamic Games and Applications, Springer, vol. 12(1), pages 214-236, March.
  • Handle: RePEc:spr:dyngam:v:12:y:2022:i:1:d:10.1007_s13235-021-00403-1
    DOI: 10.1007/s13235-021-00403-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-021-00403-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-021-00403-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Ashish R. Hota & Shreyas Sundaram, 2017. "Game-Theoretic Vaccination Against Networked SIS Epidemics and Impacts of Human Decision-Making," Papers 1703.08750, arXiv.org, revised Mar 2019.
    3. Timothy C Reluga, 2010. "Game Theory of Social Distancing in Response to an Epidemic," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-9, May.
    4. Toxvaerd, F.M.O, 2020. "Equilibrium Social Distancing," Cambridge Working Papers in Economics 2021, Faculty of Economics, University of Cambridge.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish R. Hota & Urmee Maitra & Ezzat Elokda & Saverio Bolognani, 2023. "Learning to Mitigate Epidemic Risks: A Dynamic Population Game Approach," Dynamic Games and Applications, Springer, vol. 13(4), pages 1106-1129, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kordonis, Ioannis & Lagos, Athanasios-Rafail & Papavassilopoulos, George P., 2022. "Nash social distancing games with equity constraints: How inequality aversion affects the spread of epidemics," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    2. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    3. Ilyass Dahmouni & Elnaz Kanani Kuchesfehani, 2022. "Necessity of Social Distancing in Pandemic Control: A Dynamic Game Theory Approach," Dynamic Games and Applications, Springer, vol. 12(1), pages 237-257, March.
    4. Fabrizio Adriani, 2020. "Social distance, speed of containment, and crowding in/out in a network model of contagion," Discussion Papers 2020-10, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    5. Baril-Tremblay, Dominique & Marlats, Chantal & Ménager, Lucie, 2021. "Self-isolation," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    6. Phelan, Thomas & Toda, Alexis Akira, 2022. "Optimal epidemic control in equilibrium with imperfect testing and enforcement," Journal of Economic Theory, Elsevier, vol. 206(C).
    7. Gans, Joshua Samuel, 2020. "The Economic Consequences of R=1: Towards a Workable Behavioural Epidemiological Model of Pandemics," SocArXiv yxdc5, Center for Open Science.
    8. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    9. Adriani, Fabrizio & Ladley, Dan, 2021. "Social distance, speed of containment and crowding in/out in a network model of contagion," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 597-625.
    10. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    11. Christoph Carnehl & Satoshi Fukuda & Nenad Kos, 2022. "Time-varying Cost of Distancing: Distancing Fatigue and Lockdowns," Papers 2206.03847, arXiv.org, revised Sep 2023.
    12. McAdams, David & Song, Yangbo & Zou, Dihan, 2023. "Equilibrium social activity during an epidemic," Journal of Economic Theory, Elsevier, vol. 207(C).
    13. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    14. John Gathergood & Fabian Gunzinger & Benedict Guttman-Kenney & Edika Quispe-Torreblanca & Neil Stewart, 2020. "Levelling Down and the COVID-19 Lockdowns: Uneven Regional Recovery in UK Consumer Spending," Papers 2012.09336, arXiv.org, revised Dec 2020.
    15. Basu Parantap & Bell Clive & Edwards Terence Huw, 2022. "COVID Social Distancing and the Poor: An Analysis of the Evidence for England," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 211-240, January.
    16. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    17. Robert M. Anderson & Haosui Duanmu & M. Ali Khan & Metin Uyanik, 2022. "Walrasian equilibrium theory with and without free-disposal: theorems and counterexamples in an infinite-agent context," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 387-412, April.
    18. Nicola Persico & Petra Todd, 2004. "Using Hit Rate Tests to Test for Racial Bias in Law Enforcement: Vehicle Searches in Wichita," NBER Working Papers 10947, National Bureau of Economic Research, Inc.
    19. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    20. Guilherme Carmona, 2004. "On the existence of pure strategy nash equilibria in large games," Nova SBE Working Paper Series wp465, Universidade Nova de Lisboa, Nova School of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:12:y:2022:i:1:d:10.1007_s13235-021-00403-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.