IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v75y2020i2d10.1007_s10589-019-00152-3.html
   My bibliography  Save this article

Optimally linearizing the alternating direction method of multipliers for convex programming

Author

Listed:
  • Bingsheng He

    (Southern University of Science and Technology of China
    Nanjing University)

  • Feng Ma

    (High-Tech Institute of Xi’an)

  • Xiaoming Yuan

    (The University of Hong Kong)

Abstract

The alternating direction method of multipliers (ADMM) is being widely used in a variety of areas; its different variants tailored for different application scenarios have also been deeply researched in the literature. Among them, the linearized ADMM has received particularly wide attention in many areas because of its efficiency and easy implementation. To theoretically guarantee convergence of the linearized ADMM, the step size for the linearized subproblems, or the reciprocal of the linearization parameter, should be sufficiently small. On the other hand, small step sizes decelerate the convergence numerically. Hence, it is interesting to probe the optimal (largest) value of the step size that guarantees convergence of the linearized ADMM. This analysis is lacked in the literature. In this paper, we provide a rigorous mathematical analysis for finding this optimal step size of the linearized ADMM and accordingly set up the optimal version of the linearized ADMM in the convex programming context. The global convergence and worst-case convergence rate measured by the iteration complexity of the optimal version of linearized ADMM are proved as well.

Suggested Citation

  • Bingsheng He & Feng Ma & Xiaoming Yuan, 2020. "Optimally linearizing the alternating direction method of multipliers for convex programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 361-388, March.
  • Handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00152-3
    DOI: 10.1007/s10589-019-00152-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00152-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00152-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. He & H. Yang & S. L. Wang, 2000. "Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 337-356, August.
    2. Jonathan Eckstein & Wang Yao, 2017. "Approximate ADMM algorithms derived from Lagrangian splitting," Computational Optimization and Applications, Springer, vol. 68(2), pages 363-405, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Tao, 2020. "Convergence study of indefinite proximal ADMM with a relaxation factor," Computational Optimization and Applications, Springer, vol. 77(1), pages 91-123, September.
    2. Edward Smith & Duane Robinson & Ashish Agalgaonkar, 2021. "Cooperative Control of Microgrids: A Review of Theoretical Frameworks, Applications and Recent Developments," Energies, MDPI, vol. 14(23), pages 1-34, December.
    3. Shengjie Xu & Bingsheng He, 2021. "A parallel splitting ALM-based algorithm for separable convex programming," Computational Optimization and Applications, Springer, vol. 80(3), pages 831-851, December.
    4. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    2. Kun Jin & Yevgeniy Vorobeychik & Mingyan Liu, 2021. "Multi-Scale Games: Representing and Solving Games on Networks with Group Structure," Papers 2101.08314, arXiv.org.
    3. Myungjin Kim & Li Wang & Yuyu Zhou, 2021. "Spatially Varying Coefficient Models with Sign Preservation of the Coefficient Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 367-386, September.
    4. Dolgopolik, Maksim V., 2021. "The alternating direction method of multipliers for finding the distance between ellipsoids," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    5. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    6. Lijun Xu & Bo Yu & Yin Zhang, 2017. "An alternating direction and projection algorithm for structure-enforced matrix factorization," Computational Optimization and Applications, Springer, vol. 68(2), pages 333-362, November.
    7. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    8. Zheng Peng & Wenxing Zhu, 2013. "An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 533-551, May.
    9. Liu, Zhiyuan & Zhang, Honggang & Zhang, Kai & Zhou, Zihan, 2023. "Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    10. S. L. Wang & L. Z. Liao, 2001. "Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 415-429, May.
    11. Z. K. Jiang & X. M. Yuan, 2010. "New Parallel Descent-like Method for Solving a Class of Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 311-323, May.
    12. Bin Gao & Feng Ma, 2018. "Symmetric Alternating Direction Method with Indefinite Proximal Regularization for Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 178-204, January.
    13. S. L. Wang & H. Yang & B. S. He, 2001. "Inexact Implicit Method with Variable Parameter for Mixed Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 431-443, November.
    14. Giorgio Costa & Roy H. Kwon, 2020. "Generalized risk parity portfolio optimization: an ADMM approach," Journal of Global Optimization, Springer, vol. 78(1), pages 207-238, September.
    15. Dirk A. Lorenz & Quoc Tran-Dinh, 2019. "Non-stationary Douglas–Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence," Computational Optimization and Applications, Springer, vol. 74(1), pages 67-92, September.
    16. Tan, Jin & Wu, Qiuwei & Wei, Wei & Liu, Feng & Li, Canbing & Zhou, Bin, 2020. "Decentralized robust energy and reserve Co-optimization for multiple integrated electricity and heating systems," Energy, Elsevier, vol. 205(C).
    17. Yunhai Xiao & Hong Zhu & Soon-Yi Wu, 2013. "Primal and dual alternating direction algorithms for ℓ 1 -ℓ 1 -norm minimization problems in compressive sensing," Computational Optimization and Applications, Springer, vol. 54(2), pages 441-459, March.
    18. Vando A. Adona & Max L. N. Gonçalves & Jefferson G. Melo, 2019. "A Partially Inexact Proximal Alternating Direction Method of Multipliers and Its Iteration-Complexity Analysis," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 640-666, August.
    19. Wu, Yiqian & Zhang, Xuan & Sun, Hongbin, 2021. "A multi-time-scale autonomous energy trading framework within distribution networks based on blockchain," Applied Energy, Elsevier, vol. 287(C).
    20. X. Wang & S. Li & X. Kou & Q. Zhang, 2015. "A new alternating direction method for linearly constrained nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 695-709, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00152-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.