IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v61y2015i1p205-217.html
   My bibliography  Save this article

On heuristic bi-criterion methods for semi-obnoxious facility location

Author

Listed:
  • P. Ortigosa
  • E. Hendrix
  • J. Redondo

Abstract

Locating a semi-obnoxious facility, like an airport or correctional center is typically a bi-criterion problem combining a convex objective function representing minimum transportation cost with a multi-extremal objective function representing the non-desirable part of the facility. Generic one or bi-objective heuristic methods can be applied to generate efficient locations for the problem. We consider the location of one facility in the plane and show that a simple random or grid search with filtering already provides a very good picture of the trade-off between the two objectives. Moreover, we argue that instead of using bi-criterion meta-heuristics, one could better exploit the convex–nonconvex structure of the problem applying the constraint method. We show how to evaluate the methods systematically using several heuristics from literature. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • P. Ortigosa & E. Hendrix & J. Redondo, 2015. "On heuristic bi-criterion methods for semi-obnoxious facility location," Computational Optimization and Applications, Springer, vol. 61(1), pages 205-217, May.
  • Handle: RePEc:spr:coopap:v:61:y:2015:i:1:p:205-217
    DOI: 10.1007/s10589-014-9709-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9709-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9709-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eligius M.T. Hendrix & Boglárka G.-Tóth, 2010. "Introduction to Nonlinear and Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-88670-1, September.
    2. Pierre Hansen & Dominique Peeters & Denis Richard & Jacques-Francois Thisse, 1985. "The Minisum and Minimax Location Problems Revisited," Operations Research, INFORMS, vol. 33(6), pages 1251-1265, December.
    3. Romero-Morales, Dolores & Carrizosa, Emilio & Conde, Eduardo, 1997. "Semi-obnoxious location models: A global optimization approach," European Journal of Operational Research, Elsevier, vol. 102(2), pages 295-301, October.
    4. Skriver, Anders J. V. & Andersen, Kim Allan, 2003. "The bicriterion semi-obnoxious location (BSL) problem solved by an [epsilon]-approximation," European Journal of Operational Research, Elsevier, vol. 146(3), pages 517-528, May.
    5. Brimberg, Jack & Juel, Henrik, 1998. "A bicriteria model for locating a semi-desirable facility in the plane," European Journal of Operational Research, Elsevier, vol. 106(1), pages 144-151, April.
    6. Yapicioglu, Haluk & Smith, Alice E. & Dozier, Gerry, 2007. "Solving the semi-desirable facility location problem using bi-objective particle swarm," European Journal of Operational Research, Elsevier, vol. 177(2), pages 733-749, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heydari, Ruhollah & Melachrinoudis, Emanuel, 2012. "Location of a semi-obnoxious facility with elliptic maximin and network minisum objectives," European Journal of Operational Research, Elsevier, vol. 223(2), pages 452-460.
    2. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "A bi-objective modeling approach applied to an urban semi-desirable facility location problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 203-213.
    3. Daniel Scholz, 2010. "The multicriteria big cube small cube method," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 286-302, July.
    4. Yapicioglu, Haluk & Smith, Alice E. & Dozier, Gerry, 2007. "Solving the semi-desirable facility location problem using bi-objective particle swarm," European Journal of Operational Research, Elsevier, vol. 177(2), pages 733-749, March.
    5. Skriver, Anders J. V. & Andersen, Kim Allan, 2003. "The bicriterion semi-obnoxious location (BSL) problem solved by an [epsilon]-approximation," European Journal of Operational Research, Elsevier, vol. 146(3), pages 517-528, May.
    6. Fernandez, J. & Fernandez, P. & Pelegrin, B., 2000. "A continuous location model for siting a non-noxious undesirable facility within a geographical region," European Journal of Operational Research, Elsevier, vol. 121(2), pages 259-274, March.
    7. A. Jourani & C. Michelot & M. Ndiaye, 2009. "Efficiency for continuous facility location problems with attraction and repulsion," Annals of Operations Research, Springer, vol. 167(1), pages 43-60, March.
    8. Abravaya, Shimon & Segal, Michael, 2009. "Low complexity algorithms for optimal consumer push-pull partial covering in the plane," European Journal of Operational Research, Elsevier, vol. 197(2), pages 456-464, September.
    9. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    10. Blanquero, R. & Carrizosa, E. & Hendrix, E.M.T., 2011. "Locating a competitive facility in the plane with a robustness criterion," European Journal of Operational Research, Elsevier, vol. 215(1), pages 21-24, November.
    11. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    12. Romero-Morales, Dolores & Carrizosa, Emilio & Conde, Eduardo, 1997. "Semi-obnoxious location models: A global optimization approach," European Journal of Operational Research, Elsevier, vol. 102(2), pages 295-301, October.
    13. van Dijk, Diana & Hendrix, Eligius M.T. & Haijema, Rene & Groeneveld, Rolf A. & van Ierland, Ekko C., 2014. "On solving a bi-level stochastic dynamic programming model for analyzing fisheries policies: Fishermen behavior and optimal fish quota," Ecological Modelling, Elsevier, vol. 272(C), pages 68-75.
    14. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    15. Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Locating a bioenergy facility using a hybrid optimization method," International Journal of Production Economics, Elsevier, vol. 123(1), pages 196-209, January.
    16. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    17. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    18. Zeng, Ziqiang & Nasri, Ehsan & Chini, Abdol & Ries, Robert & Xu, Jiuping, 2015. "A multiple objective decision making model for energy generation portfolio under fuzzy uncertainty: Case study of large scale investor-owned utilities in Florida," Renewable Energy, Elsevier, vol. 75(C), pages 224-242.
    19. Carrizosa, E. & Frenk, J.B.G., 1996. "Dominating Sets for Convex Functions with some Applications," Econometric Institute Research Papers EI 9657-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Qunfeng Liu, 2013. "Linear scaling and the DIRECT algorithm," Journal of Global Optimization, Springer, vol. 56(3), pages 1233-1245, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:1:p:205-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.