IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i2p452-460.html
   My bibliography  Save this article

Location of a semi-obnoxious facility with elliptic maximin and network minisum objectives

Author

Listed:
  • Heydari, Ruhollah
  • Melachrinoudis, Emanuel

Abstract

This paper considers the problem of locating a single semi-obnoxious facility on a general network, so as to minimize the total transportation cost between the new facility and the demand points (minisum), and at the same time to minimize the undesirable effects of the new facility by maximizing its distance from the closest population center (maximin). The two objectives employ different distance metrics to reflect reality. Since vehicles move on the transportation network, the shortest path distance is suitable for the minisum objective. For the maximin objective, however, the elliptic distance metric is used to reflect the impact of wind in the distribution of pollution. An efficient algorithm is developed to find the nondominated set of the bi-objective model and is implemented on a numerical example. A simulation experiment is provided to find the average computational complexity of the algorithm.

Suggested Citation

  • Heydari, Ruhollah & Melachrinoudis, Emanuel, 2012. "Location of a semi-obnoxious facility with elliptic maximin and network minisum objectives," European Journal of Operational Research, Elsevier, vol. 223(2), pages 452-460.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:452-460
    DOI: 10.1016/j.ejor.2012.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skriver, Anders J. V. & Andersen, Kim Allan, 2003. "The bicriterion semi-obnoxious location (BSL) problem solved by an [epsilon]-approximation," European Journal of Operational Research, Elsevier, vol. 146(3), pages 517-528, May.
    2. Emanuel Melachrinoudis, 2011. "The Location of Undesirable Facilities," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 207-239, Springer.
    3. Richard L. Church & Robert S. Garfinkel, 1978. "Locating an Obnoxious Facility on a Network," Transportation Science, INFORMS, vol. 12(2), pages 107-118, May.
    4. Yapicioglu, Haluk & Smith, Alice E. & Dozier, Gerry, 2007. "Solving the semi-desirable facility location problem using bi-objective particle swarm," European Journal of Operational Research, Elsevier, vol. 177(2), pages 733-749, March.
    5. Yoshiaki Ohsawa & Kazuki Tamura, 2003. "Efficient Location for a Semi-Obnoxious Facility," Annals of Operations Research, Springer, vol. 123(1), pages 173-188, October.
    6. Plastria, Frank & Carrizosa, Emilio, 1999. "Undesirable facility location with minimal covering objectives," European Journal of Operational Research, Elsevier, vol. 119(1), pages 158-180, November.
    7. Robert F. Love & James G. Morris, 1979. "Mathematical Models of Road Travel Distances," Management Science, INFORMS, vol. 25(2), pages 130-139, February.
    8. Brimberg, Jack & Juel, Henrik, 1998. "A bicriteria model for locating a semi-desirable facility in the plane," European Journal of Operational Research, Elsevier, vol. 106(1), pages 144-151, April.
    9. Horst Hamacher & Martine Labbé & Stefan Nickel & Anders Skriver, 2002. "Multicriteria Semi-Obnoxious Network Location Problems (MSNLP) with Sum and Center Objectives," Annals of Operations Research, Springer, vol. 110(1), pages 33-53, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colmenar, J. Manuel & Greistorfer, Peter & Martí, Rafael & Duarte, Abraham, 2016. "Advanced Greedy Randomized Adaptive Search Procedure for the Obnoxious p-Median problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 432-442.
    2. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Jourani & C. Michelot & M. Ndiaye, 2009. "Efficiency for continuous facility location problems with attraction and repulsion," Annals of Operations Research, Springer, vol. 167(1), pages 43-60, March.
    2. Abravaya, Shimon & Segal, Michael, 2009. "Low complexity algorithms for optimal consumer push-pull partial covering in the plane," European Journal of Operational Research, Elsevier, vol. 197(2), pages 456-464, September.
    3. Colmenar, J. Manuel & Greistorfer, Peter & Martí, Rafael & Duarte, Abraham, 2016. "Advanced Greedy Randomized Adaptive Search Procedure for the Obnoxious p-Median problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 432-442.
    4. P. Ortigosa & E. Hendrix & J. Redondo, 2015. "On heuristic bi-criterion methods for semi-obnoxious facility location," Computational Optimization and Applications, Springer, vol. 61(1), pages 205-217, May.
    5. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    6. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "A bi-objective modeling approach applied to an urban semi-desirable facility location problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 203-213.
    7. O Berman & Q Wang, 2007. "Locating semi-obnoxious facilities with expropriation: minisum criterion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 378-390, March.
    8. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    9. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    10. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2016. "The maxisum and maximin-maxisum HAZMAT routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 316-333.
    11. C. Valero Franco & A. Rodríguez-Chía & I. Espejo Miranda, 2008. "The single facility location problem with average-distances," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 164-194, July.
    12. Andreas Löhne & Andrea Wagner, 2017. "Solving DC programs with a polyhedral component utilizing a multiple objective linear programming solver," Journal of Global Optimization, Springer, vol. 69(2), pages 369-385, October.
    13. Daniel Scholz, 2010. "The multicriteria big cube small cube method," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 286-302, July.
    14. Levinson, David & El-Geneidy, Ahmed, 2009. "The minimum circuity frontier and the journey to work," Regional Science and Urban Economics, Elsevier, vol. 39(6), pages 732-738, November.
    15. Rainer Burkard & Jafar Fathali, 2007. "A polynomial method for the pos/neg weighted 3-median problem on a tree," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 229-238, April.
    16. Nimrod Megiddo, 1981. "The Maximum Coverage Location Problem," Discussion Papers 490, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    17. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    18. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    19. MacLeod, W.B. & Norman, G. & Thisse, J.-F., 1988. "Price discrimination and equilibrium in monopolistic competition," International Journal of Industrial Organization, Elsevier, vol. 6(4), pages 429-446.
    20. Skriver, Anders J. V. & Andersen, Kim Allan, 2003. "The bicriterion semi-obnoxious location (BSL) problem solved by an [epsilon]-approximation," European Journal of Operational Research, Elsevier, vol. 146(3), pages 517-528, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:452-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.