IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i6d10.1007_s10584-023-03542-z.html
   My bibliography  Save this article

Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau

Author

Listed:
  • Dingcai Yin

    (Lanzhou University
    Lanzhou University)

  • Xiaohua Gou

    (Lanzhou University
    Lanzhou University)

  • Haijiang Yang

    (Lanzhou University
    Lanzhou University)

  • Kai Wang

    (Lanzhou University
    Lanzhou University)

  • Jie Liu

    (Lanzhou University
    Lanzhou University)

  • Yiran Zhang

    (Lanzhou University
    Lanzhou University)

  • Linlin Gao

    (Lanzhou University
    Lanzhou University)

Abstract

Increasing warming and drought intensity and frequency have led to profound impacts on forest ecosystems around the world. However, few studies have assessed the impacts of climate change on the alpine forests of different tree species at the regional scale on the eastern Tibetan Plateau (TP). We established 40 standard tree ring width chronologies based on 2137 cores from 1161 trees for five conifer species on the Gannan Plateau, located in eastern TP. Climate data from CRU grids are employed to study the relationships between radial growth and climate factors at each site during a common period of 1961–2019. A mixed-effects model is used to disentangle the relative contributions of elevation and species on the relationships between tree radial growth and climatic variables. The results highlight that tree growth responses to climate varied between species, which mainly results from species distribution being determined by elevation. Specifically, tree growth at higher elevations is mainly constrained by low temperature in the growing season, while drought is the controlling factor limiting tree growth at lower elevations. Moreover, elevation plays a more important role in determining the tree growth response to climate than species. The radial growth of Picea purpurea and Abies fargesii at higher elevations might benefit from future warming due to a positive correlation with temperature in the growing season, which might promote an upward shift in species distribution. While increasing warming and drought intensity may restrict tree growth of Picea asperata, Picea wilsonii, and Pinus tabulaeformis or even cause tree mortality at lower elevations, this may lead to future species composition changes and distribution range constriction.

Suggested Citation

  • Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:6:d:10.1007_s10584-023-03542-z
    DOI: 10.1007/s10584-023-03542-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03542-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03542-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfgang Buermann & Matthias Forkel & Michael O’Sullivan & Stephen Sitch & Pierre Friedlingstein & Vanessa Haverd & Atul K. Jain & Etsushi Kato & Markus Kautz & Sebastian Lienert & Danica Lombardozzi , 2018. "Widespread seasonal compensation effects of spring warming on northern plant productivity," Nature, Nature, vol. 562(7725), pages 110-114, October.
    2. Giovanni Forzieri & Marco Girardello & Guido Ceccherini & Jonathan Spinoni & Luc Feyen & Henrik Hartmann & Pieter S. A. Beck & Gustau Camps-Valls & Gherado Chirici & Achille Mauri & Alessandro Cescatt, 2021. "Emergent vulnerability to climate-driven disturbances in European forests," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    4. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    5. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Andrew M. Linke & Frank D. W. Witmer & John O’Loughlin, 2020. "Do people accurately report droughts? Comparison of instrument-measured and national survey data in Kenya," Climatic Change, Springer, vol. 162(3), pages 1143-1160, October.
    3. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    4. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    5. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    7. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    8. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    9. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    10. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    11. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    12. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    13. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    15. Marco Sannolo & Miguel Angel Carretero, 2019. "Dehydration constrains thermoregulation and space use in lizards," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    16. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    17. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    18. Jieming Chou & Tian Xian & Wenjie Dong & Yuan Xu, 2018. "Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    19. Oyediran O. Oyebola & Jackson Efitre & Laban Musinguzi & Augustine E. Falaye, 2021. "Potential adaptation strategies for climate change impact among flood-prone fish farmers in climate hotspot Uganda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12761-12790, September.
    20. Xiuhua Cai & Wenqian Zhang & Cunjie Zhang & Qiang Zhang & Jingli Sun & Chen Cheng & Wenjie Fan & Ying Yu & Xiaoling Liu, 2022. "Identification and Spatial-Temporal Variation Characteristics of Regional Drought Processes in China," Land, MDPI, vol. 11(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:6:d:10.1007_s10584-023-03542-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.