IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i4d10.1007_s10584-020-02936-7.html
   My bibliography  Save this article

The albedo loss from the melting of the Greenland ice sheet and the social cost of carbon

Author

Listed:
  • Sandra Gschnaller

    (ifo Institut für Wirtschaftsforschung)

Abstract

I extend the reduced Greenland ice sheet (GIS) model-module of DICE-GIS (Nordhaus, Proc Natl Acad Sci 25(116):12261–12269, 2019) by integrating snow-albedo feedback (SAF) and potential tipping of the ice sheet into the resuming DICE-GIS SAF model. The increasing global temperature no longer only results in the melting of the GIS, but also in albedo loss, which in turn impacts the strength of the SAF. As a consequence, global warming and the melting of the ice accelerate. The social cost of carbon (SCC) increases because the economic damages are not only related to intensified sea level rise, but also to accelerated global temperature rise. Accounting for the SAF raises the SCC from 37 to 41 $/t CO2 in 2020, an increase of 11%. The temperature increase is the key channel through which the SAF impacts the SCC. The long-term volume of the GIS decreases by 2%, while the additional inclusion of tipping reduces it further by up to 35%.

Suggested Citation

  • Sandra Gschnaller, 2020. "The albedo loss from the melting of the Greenland ice sheet and the social cost of carbon," Climatic Change, Springer, vol. 163(4), pages 2201-2231, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-020-02936-7
    DOI: 10.1007/s10584-020-02936-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02936-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02936-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derek Lemoine & Ivan Rudik, 2017. "Managing Climate Change Under Uncertainty: Recursive Integrated Assessment at an Inflection Point," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 117-142, October.
    2. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    3. Naevdal, Eric, 2006. "Dynamic optimisation in the presence of threshold effects when the location of the threshold is uncertain - with an application to a possible disintegration of the Western Antarctic Ice Sheet," Journal of Economic Dynamics and Control, Elsevier, vol. 30(7), pages 1131-1158, July.
    4. Derek Lemoine & Ivan Rudik, 2017. "Managing Climate Change Under Uncertainty: Recursive Integrated Assessment at an Inflection Point," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 117-142, October.
    5. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    6. Alexander Robinson & Reinhard Calov & Andrey Ganopolski, 2012. "Multistability and critical thresholds of the Greenland ice sheet," Nature Climate Change, Nature, vol. 2(6), pages 429-432, June.
    7. Luke D. Trusel & Sarah B. Das & Matthew B. Osman & Matthew J. Evans & Ben E. Smith & Xavier Fettweis & Joseph R. McConnell & Brice P. Y. Noël & Michiel R. Broeke, 2018. "Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming," Nature, Nature, vol. 564(7734), pages 104-108, December.
    8. van der Ploeg, Frederick, 2014. "Abrupt positive feedback and the social cost of carbon," European Economic Review, Elsevier, vol. 67(C), pages 28-41.
    9. Simon Dietz & Frederick van der Ploeg & Armon Rezai & Frank Venmans, 2021. "Are Economists Getting Climate Dynamics Right and Does It Matter?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(5), pages 895-921.
    10. Nicholas Stern, 2016. "Economics: Current climate models are grossly misleading," Nature, Nature, vol. 530(7591), pages 407-409, February.
    11. Millner, Antony & McDermott, Thomas K. J., 2016. "Model confirmation in climate economics," LSE Research Online Documents on Economics 67122, London School of Economics and Political Science, LSE Library.
    12. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    13. Delavane Diaz & Klaus Keller, 2016. "A Potential Disintegration of the West Antarctic Ice Sheet: Implications for Economic Analyses of Climate Policy," American Economic Review, American Economic Association, vol. 106(5), pages 607-611, May.
    14. Robert E. Kopp & Rachael Shwom & Gernot Wagner & Jiacan Yuan, 2016. "Tipping elements and climate-economic shocks: Pathways toward integrated assessment," Papers 1603.00850, arXiv.org, revised Jul 2016.
    15. Derek Lemoine & Christian P. Traeger, 2016. "Economics of tipping the climate dominoes," Nature Climate Change, Nature, vol. 6(5), pages 514-519, May.
    16. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    17. van der Ploeg, Frederick & De Zeeuw, Aart, 2014. "Climate Tipping and Economic Growth: Precautionary Saving and the Social Cost of Carbon," CEPR Discussion Papers 9982, C.E.P.R. Discussion Papers.
    18. Dietz, Simon & Venmans, Frank, 2019. "Cumulative carbon emissions and economic policy: In search of general principles," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 108-129.
    19. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    20. Timothy M. Lenton & Hans Joachim Schellnhuber, 2007. "Tipping the scales," Nature Climate Change, Nature, vol. 1(712), pages 97-98, December.
    21. Dmitry Yumashev & Chris Hope & Kevin Schaefer & Kathrin Riemann-Campe & Fernando Iglesias-Suarez & Elchin Jafarov & Eleanor J. Burke & Paul J. Young & Yasin Elshorbany & Gail Whiteman, 2019. "Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    2. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Gschnaller, 2020. "The Albedo Loss from the Melting of the Greenland Ice Sheet and the Social Cost of Carbon," ifo Working Paper Series 332, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    2. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2021. "Social Cost of Carbon Under Stochastic Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 709-737, April.
    3. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    4. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    5. Svenn Jensen & Christian P. Traeger & Christian Träger, 2021. "Pricing Climate Risk," CESifo Working Paper Series 9196, CESifo.
    6. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    7. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    8. Campiglio, Emanuele & Dietz, Simon & Venmans, Frank, 2022. "Optimal climate policy as if the transition matters," LSE Research Online Documents on Economics 117609, London School of Economics and Political Science, LSE Library.
    9. Yongyang Cai, 2020. "The Role of Uncertainty in Controlling Climate Change," Papers 2003.01615, arXiv.org, revised Oct 2020.
    10. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.
    11. Kent D. Daniel & Robert B. Litterman & Gernot Wagner, 2016. "Applying Asset Pricing Theory to Calibrate the Price of Climate Risk," NBER Working Papers 22795, National Bureau of Economic Research, Inc.
    12. Wonjun Chang & Thomas F. Rutherford, 2017. "Catastrophic Thresholds, Bayesian Learning And The Robustness Of Climate Policy Recommendations," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-23, November.
    13. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    14. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    15. Olijslagers, Stan & van der Ploeg, Frederick & van Wijnbergen, Sweder, 2023. "On current and future carbon prices in a risky world," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    16. Stoerk, Thomas & Wagner, Gernot & Ward, Robert E. T., 2018. "Recommendations for improving the treatment of risk and uncertainty in economic estimates of climate impacts in the Sixth Intergovernmental Panel on Climate Change Assessment Report," LSE Research Online Documents on Economics 87957, London School of Economics and Political Science, LSE Library.
    17. Simon Dietz & Bruno Lanz, 2019. "Growth and Adaptation to Climate Change in the Long Run," CESifo Working Paper Series 7986, CESifo.
    18. Ton S. van den Bremer & Frederick van der Ploeg, 2021. "The Risk-Adjusted Carbon Price," American Economic Review, American Economic Association, vol. 111(9), pages 2782-2810, September.
    19. Frederick Ploeg & Armon Rezai, 2019. "Simple Rules for Climate Policy and Integrated Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 77-108, January.
    20. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Post-Print hal-03027150, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-020-02936-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.