IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v160y2020i3d10.1007_s10584-019-02589-1.html
   My bibliography  Save this article

Quasi-experimental estimates of the transient climate response using observational data

Author

Listed:
  • Giselle Montamat

    (Harvard University)

  • James H. Stock

    (Harvard University and the National Bureau of Economic Research)

Abstract

The transient climate response (TCR) is the change in global mean temperature at the time of an exogenous doubling in atmospheric CO2 concentration increasing at a rate of 1% per year. A problem with estimating the TCR using observational data is that observed CO2 concentrations depend in turn on temperature. Therefore, the observed concentration data are endogenous, potentially leading to simultaneous causation bias of regression estimates of the TCR. We address this problem by employing instrumental variables regression, which uses changes in radiative forcing external to earth systems to provide quasi-experiments that can be used to estimate the TCR. Because the modern instrumental record is short, we focus on decadal fluctuations (up to 30-year changes), which also mitigate some statistical issues associated with highly persistent temperature and concentration data. Our estimates of the TCR for these shorter horizons, normalized to be comparable to the traditional 70-year TCR, fall within the range in the IPCC-AR5 and provide new observational confirmation of model-based estimates.

Suggested Citation

  • Giselle Montamat & James H. Stock, 2020. "Quasi-experimental estimates of the transient climate response using observational data," Climatic Change, Springer, vol. 160(3), pages 361-371, June.
  • Handle: RePEc:spr:climat:v:160:y:2020:i:3:d:10.1007_s10584-019-02589-1
    DOI: 10.1007/s10584-019-02589-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02589-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02589-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Luis Montiel Olea & Carolin Pflueger, 2013. "A Robust Test for Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 358-369, July.
    2. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    3. Robert K. Kaufmann & David I. Stern, 1997. "Evidence for human influence on climate from hemispheric temperature relations," Nature, Nature, vol. 388(6637), pages 39-44, July.
    4. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    5. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice Rejoinder," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 574-575, October.
    6. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    7. Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
    8. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    9. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    10. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
    11. David Stern & Robert Kaufmann, 2014. "Anthropogenic and natural causes of climate change," Climatic Change, Springer, vol. 122(1), pages 257-269, January.
    12. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Dietz & Frederick van der Ploeg & Armon Rezai & Frank Venmans, 2021. "Are Economists Getting Climate Dynamics Right and Does It Matter?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(5), pages 895-921.
    2. Liang Chen & Juan J. Dolado & Jesús Gonzalo & Andrey Ramos, 2023. "Heterogeneous predictive association of CO2 with global warming," Economica, London School of Economics and Political Science, vol. 90(360), pages 1397-1421, October.
    3. Yang, Tianle & Li, Fangmin & Du, Min & Huang, Miao & Li, Yinuo, 2023. "Impacts of alternative energy production innovation on reducing CO2 emissions: Evidence from China," Energy, Elsevier, vol. 268(C).
    4. Chen, Liang & Dolado, Juan José & Gonzalo, Jesús & Ramos Ramirez, Andrey David, 2013. "Revisiting Granger Causality of CO2 on Global Warming: a Quantile Factor Approach," DES - Working Papers. Statistics and Econometrics. WS 35531, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "On Spurious Causality, CO2, and Global Temperature," Papers 2103.10605, arXiv.org.
    6. Tobias Adrian & Nina Boyarchenko & Domenico Giannone & Ananthakrishnan Prasad & Dulani Seneviratne & Yanzhe Xiao, 2022. "800,000 Years of Climate Risk," Staff Reports 1031, Federal Reserve Bank of New York.
    7. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rho, Seunghwa & Vogelsang, Timothy J., 2021. "Inference in time series models using smoothed-clustered standard errors," Journal of Econometrics, Elsevier, vol. 224(1), pages 113-133.
    2. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    3. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    4. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    5. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    6. Ulrich K. Müller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Working Papers 2021-61, Princeton University. Economics Department..
    7. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    8. Nicolau, João & Rodrigues, Paulo M.M. & Stoykov, Marian Z., 2023. "Tail index estimation in the presence of covariates: Stock returns’ tail risk dynamics," Journal of Econometrics, Elsevier, vol. 235(2), pages 2266-2284.
    9. Yi-Chieh Wen & Bin Li, 2020. "Lagged country returns and international stock return predictability during business cycle recession periods," Applied Economics, Taylor & Francis Journals, vol. 52(46), pages 5005-5019, October.
    10. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    11. Ulrich K. Müller & Mark W. Watson, 2020. "Low-Frequency Analysis of Economic Time Series," Working Papers 2020-13, Princeton University. Economics Department..
    12. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.
    13. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    14. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    15. Eben Lazarus & Daniel J. Lewis & James H. Stock, 2021. "The Size‐Power Tradeoff in HAR Inference," Econometrica, Econometric Society, vol. 89(5), pages 2497-2516, September.
    16. Yixiao Sun & Xuexin Wang, 2019. "An Asymptotically F-Distributed Chow Test in the Presence of Heteroscedasticity and Autocorrelation," Papers 1911.03771, arXiv.org.
    17. Sun, Yixiao & Yang, Jingjing, 2020. "Testing-optimal kernel choice in HAR inference," Journal of Econometrics, Elsevier, vol. 219(1), pages 123-136.
    18. Jonathan Iworiso & Spyridon Vrontos, 2020. "On the directional predictability of equity premium using machine learning techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 449-469, April.
    19. Peter C. B. Phillips & Xiaohu Wang & Yonghui Zhang, 2019. "HAR Testing for Spurious Regression in Trend," Econometrics, MDPI, vol. 7(4), pages 1-28, December.
    20. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," LSE Research Online Documents on Economics 107426, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:160:y:2020:i:3:d:10.1007_s10584-019-02589-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.