IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v157y2019i3d10.1007_s10584-019-02575-7.html
   My bibliography  Save this article

Coastal Louisiana landscape and storm surge evolution: 1850–2110

Author

Listed:
  • Christopher G. Siverd

    (Louisiana State University)

  • Scott C. Hagen

    (Louisiana State University
    Louisiana State University
    Louisiana State University
    Louisiana State University)

  • Matthew V. Bilskie

    (Louisiana State University)

  • DeWitt H. Braud

    (Louisiana State University)

  • R. Hampton Peele

    (Louisiana State University)

  • Madeline R. Foster-Martinez

    (Louisiana State University)

  • Robert R. Twilley

    (Louisiana State University
    Louisiana State University)

Abstract

Storm surge models are constructed to represent the Louisiana coastal landscape circa 1850, 1890, 1930, 1970, 1990, 2010, 2030, 2050, 2070, 2090, and 2110. Historical maps are utilized to develop models with past landscapes while a continuation of recent landscape trends is assumed for future models. The same suite of meteorological wind and pressure fields is simulated with each storm surge model. Simulation results for 1850 and 1890 demonstrate minimal change in storm surge characteristics along the Louisiana coast. A mean maximum storm surge height increase of 0.26 m from 1930 to 2010 is quantified within the sediment-abundant Atchafalaya-Vermilion coastal basin, while increases of 0.34 m and 0.41 m are quantified within sediment-starved Terrebonne and Barataria, respectively. Future mean maximum storm surge heights increase across these three coastal basins by 0.67 m, 0.55 m, and 0.75 m, indicating negligible differences from 2010 to 2110, regardless of sediment availability. Results indicate that past changes in the Louisiana coastal landscape and storm surge were a consequence of local land and river management decisions while future changes are dominated by relative (subsidence and eustatic) sea level rise. Projecting landscape and surge changes beyond 50 years could aide policy makers as they work to enhance resilience across coastal Louisiana. Similar analyses could be conducted for other deltas across the world, such as the Ganges, that are experiencing challenges comparable to those of the Mississippi River Delta.

Suggested Citation

  • Christopher G. Siverd & Scott C. Hagen & Matthew V. Bilskie & DeWitt H. Braud & R. Hampton Peele & Madeline R. Foster-Martinez & Robert R. Twilley, 2019. "Coastal Louisiana landscape and storm surge evolution: 1850–2110," Climatic Change, Springer, vol. 157(3), pages 445-468, December.
  • Handle: RePEc:spr:climat:v:157:y:2019:i:3:d:10.1007_s10584-019-02575-7
    DOI: 10.1007/s10584-019-02575-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02575-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02575-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    2. Scott Kulp & Benjamin H. Strauss, 2017. "Rapid escalation of coastal flood exposure in US municipalities from sea level rise," Climatic Change, Springer, vol. 142(3), pages 477-489, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher G. Siverd & Scott C. Hagen & Matthew V. Bilskie & DeWitt H. Braud & Robert R. Twilley, 2020. "Quantifying storm surge and risk reduction costs: a case study for Lafitte, Louisiana," Climatic Change, Springer, vol. 161(1), pages 201-223, July.
    2. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    3. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    4. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    5. William D. Nordhaus, 2018. "Global Melting? The Economics of Disintegration of the Greenland Ice Sheet," NBER Working Papers 24640, National Bureau of Economic Research, Inc.
    6. Chih-Min Hsieh & Dean Chou & Tai-Wen Hsu, 2022. "Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    7. Lilai Xu & Shengping Ding & Vilas Nitivattananon & Jianxiong Tang, 2021. "Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    8. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    9. Mathew E. Hauer & Dean Hardy & Scott A. Kulp & Valerie Mueller & David J. Wrathall & Peter U. Clark, 2021. "Assessing population exposure to coastal flooding due to sea level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Steven A. McAlpine & Jeremy R. Porter, 2018. "Estimating Recent Local Impacts of Sea-Level Rise on Current Real-Estate Losses: A Housing Market Case Study in Miami-Dade, Florida," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(6), pages 871-895, December.
    11. Jérémy Rohmer & Gonéri Cozannet & Jean-Charles Manceau, 2019. "Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions," Climatic Change, Springer, vol. 155(1), pages 95-109, July.
    12. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).
    13. Wanyun Shao & Hamed Moftakhari & Hamid Moradkhani, 2020. "Comparing public perceptions of sea level rise with scientific projections across five states of the U.S. Gulf Coast region," Climatic Change, Springer, vol. 163(1), pages 317-335, November.
    14. Molinaroli, Emanuela & Guerzoni, Stefano & Suman, Daniel, 2018. "Adaptations to Sea Level Rise: A Tale of Two Cities – Venice and Miami," MarXiv 73a25, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:157:y:2019:i:3:d:10.1007_s10584-019-02575-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.