IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v138y2016i3d10.1007_s10584-016-1753-7.html
   My bibliography  Save this article

Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen

Author

Listed:
  • Xin Lu

    (Karolinska Institutet
    Flowminder Foundation
    National University of Defense Technology)

  • David J. Wrathall

    (Oregon State University)

  • Pål Roe Sundsøy

    (Telenor Research)

  • Md. Nadiruzzaman

    (University of Exeter
    International Centre for Climate Change and Development)

  • Erik Wetter

    (Flowminder Foundation
    Stockholm School of Economics)

  • Asif Iqbal

    (Telenor Research)

  • Taimur Qureshi

    (Telenor Research)

  • Andrew J. Tatem

    (Flowminder Foundation
    University of Southampton)

  • Geoffrey S. Canright

    (Telenor Research)

  • Kenth Engø-Monsen

    (Telenor Research)

  • Linus Bengtsson

    (Karolinska Institutet
    Flowminder Foundation)

Abstract

Large-scale data from digital infrastructure, like mobile phone networks, provides rich information on the behavior of millions of people in areas affected by climate stress. Using anonymized data on mobility and calling behavior from 5.1 million Grameenphone users in Barisal Division and Chittagong District, Bangladesh, we investigate the effect of Cyclone Mahasen, which struck Barisal and Chittagong in May 2013. We characterize spatiotemporal patterns and anomalies in calling frequency, mobile recharges, and population movements before, during and after the cyclone. While it was originally anticipated that the analysis might detect mass evacuations and displacement from coastal areas in the weeks following the storm, no evidence was found to suggest any permanent changes in population distributions. We detect anomalous patterns of mobility both around the time of early warning messages and the storm’s landfall, showing where and when mobility occurred as well as its characteristics. We find that anomalous patterns of mobility and calling frequency correlate with rainfall intensity (r = .75, p

Suggested Citation

  • Xin Lu & David J. Wrathall & Pål Roe Sundsøy & Md. Nadiruzzaman & Erik Wetter & Asif Iqbal & Taimur Qureshi & Andrew J. Tatem & Geoffrey S. Canright & Kenth Engø-Monsen & Linus Bengtsson, 2016. "Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen," Climatic Change, Springer, vol. 138(3), pages 505-519, October.
  • Handle: RePEc:spr:climat:v:138:y:2016:i:3:d:10.1007_s10584-016-1753-7
    DOI: 10.1007/s10584-016-1753-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1753-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1753-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(02), pages 14-24, July.
    2. Paul I. Palmer & Matthew J. Smith, 2014. "Earth systems: Model human adaptation to climate change," Nature, Nature, vol. 512(7515), pages 365-366, August.
    3. Alec Pawling & Nitesh V. Chawla & Greg Madey, 2007. "Anomaly detection in a mobile communication network," Computational and Mathematical Organization Theory, Springer, vol. 13(4), pages 407-422, December.
    4. Richard Black & Stephen R. G. Bennett & Sandy M. Thomas & John R. Beddington, 2011. "Migration as adaptation," Nature, Nature, vol. 478(7370), pages 447-449, October.
    5. Michael E. Mann & Raymond S. Bradley & Malcolm K. Hughes, 1998. "Global-scale temperature patterns and climate forcing over the past six centuries," Nature, Nature, vol. 392(6678), pages 779-787, April.
    6. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    7. Julienne Stroeve & Walter Meier, 2012. "Arctic Sea Ice Decline," Chapters, in: Guoxiang Liu (ed.), Greenhouse Gases - Emission, Measurement and Management, IntechOpen.
    8. Hallegatte, Stephane & Przyluski, Valentin, 2010. "The economics of natural disasters : concepts and methods," Policy Research Working Paper Series 5507, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dennis Wesselbaum, 2023. "Climate migration in Asia," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-11, December.
    2. Henry, Elise & Furno, Angelo & Faouzi, Nour-Eddin El & Rey, David, 2022. "Locating park-and-ride facilities for resilient on-demand urban mobility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Sébastien Dujardin & Damien Jacques & Jessica Steele & Catherine Linard, 2020. "Mobile Phone Data for Urban Climate Change Adaptation: Reviewing Applications, Opportunities and Key Challenges," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    4. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    5. Brian Beckage & Katherine Lacasse & Jonathan M. Winter & Louis J. Gross & Nina Fefferman & Forrest M. Hoffman & Sara S. Metcalf & Travis Franck & Eric Carr & Asim Zia & Ann Kinzig, 2020. "The Earth has humans, so why don’t our climate models?," Climatic Change, Springer, vol. 163(1), pages 181-188, November.
    6. Sorrentino, Marco & Bruno, Marco & Trifirò, Alena & Rizzo, Gianfranco, 2019. "An innovative energy efficiency metric for data analytics and diagnostics in telecommunication applications," Applied Energy, Elsevier, vol. 242(C), pages 1539-1548.
    7. Tapendra Kumar Srivastava & Pushpa Singh & Ram Ratan Verma, 2022. "Weather variability trends in Gangetic plains of Uttar Pradesh, India: influence on cropping systems and adaptation strategies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3588-3618, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Kunze, 2021. "Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 545-569, April.
    2. Kunze, Sven, 2020. "Unraveling the effects of tropical cyclones on economic sectors worldwide," Working Papers 0685, University of Heidelberg, Department of Economics.
    3. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    4. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    5. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    7. Fujiki, Hiroshi & Hsiao, Cheng, 2015. "Disentangling the effects of multiple treatments—Measuring the net economic impact of the 1995 great Hanshin-Awaji earthquake," Journal of Econometrics, Elsevier, vol. 186(1), pages 66-73.
    8. Yasuyuki Todo & Kentaro Nakajima & Petr Matous, 2015. "How Do Supply Chain Networks Affect The Resilience Of Firms To Natural Disasters? Evidence From The Great East Japan Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 209-229, March.
    9. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    10. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    11. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    12. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    13. Kilgarriff, Paul & McDermott, T.K.J. & Vega, Amaya & Morrissey , Karyn & O’Donoghue, Cathal, 2018. "Flooding disruption and the impact on the spatial distribution of commuter’s income," Working Papers 309608, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    14. Noy, Ilan & Yonson, Rio, 2016. "A survey of the theory and measurement of economic vulnerability and resilience to natural hazards," Working Paper Series 19394, Victoria University of Wellington, School of Economics and Finance.
    15. Oscar Becerra & Eduardo Cavallo & Ilan Noy, 2014. "Foreign Aid in the Aftermath of Large Natural Disasters," Review of Development Economics, Wiley Blackwell, vol. 18(3), pages 445-460, August.
    16. Meri Davlasheridze & Qing Miao, 2021. "Natural disasters, public housing, and the role of disaster aid," Journal of Regional Science, Wiley Blackwell, vol. 61(5), pages 1113-1135, November.
    17. Pedcris M. Orencio & Masahiko Fujii, 2014. "A spatiotemporal approach for determining disaster-risk potential based on damage consequences of multiple hazard events," Journal of Risk Research, Taylor & Francis Journals, vol. 17(7), pages 815-836, August.
    18. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    19. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal, March.
    20. Felbermayr, Gabriel & Gröschl, Jasmin, 2014. "Naturally negative: The growth effects of natural disasters," Journal of Development Economics, Elsevier, vol. 111(C), pages 92-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:138:y:2016:i:3:d:10.1007_s10584-016-1753-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.