IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v138y2016i1d10.1007_s10584-016-1708-z.html
   My bibliography  Save this article

Detection of anthropogenic influence on a summertime heat stress index

Author

Listed:
  • Thomas R. Knutson

    (Geophysical Fluid Dynamics Laboratory / NOAA)

  • Jeffrey J. Ploshay

    (Geophysical Fluid Dynamics Laboratory / NOAA)

Abstract

One of the most consequential impacts of anthropogenic warming on humans may be increased heat stress, combining temperature and humidity effects. Here we examine whether there are now detectable changes in summertime heat stress over land regions. As a heat stress metric we use a simplified wet bulb globe temperature (WBGT) index. Observed trends in WBGT (1973–2012) are compared to trends from CMIP5 historical simulations (eight-model ensemble) using either anthropogenic and natural forcing agents combined or natural forcings alone. Our analysis suggests that there has been a detectable anthropogenic increase in mean summertime heat stress since 1973, both globally and in most land regions analyzed. A detectable increase is found over a larger fraction of land for WBGT than for temperature, as WBGT summertime means have lower interannual variability than surface temperature at gridbox scales. Notably, summertime WBGT over land has continued increasing in recent years--consistent with climate models--despite the apparent ‘hiatus’ in global warming and despite a decreasing tendency in observed relative humidity over land since the late 1990s.

Suggested Citation

  • Thomas R. Knutson & Jeffrey J. Ploshay, 2016. "Detection of anthropogenic influence on a summertime heat stress index," Climatic Change, Springer, vol. 138(1), pages 25-39, September.
  • Handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1708-z
    DOI: 10.1007/s10584-016-1708-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1708-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1708-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John P. Dunne & Ronald J. Stouffer & Jasmin G. John, 2013. "Reductions in labour capacity from heat stress under climate warming," Nature Climate Change, Nature, vol. 3(6), pages 563-566, June.
    2. Sonia I. Seneviratne & Markus G. Donat & Brigitte Mueller & Lisa V. Alexander, 2014. "No pause in the increase of hot temperature extremes," Nature Climate Change, Nature, vol. 4(3), pages 161-163, March.
    3. Dian J. Gaffen & Rebecca J. Ross, 1998. "Increased summertime heat stress in the US," Nature, Nature, vol. 396(6711), pages 529-530, December.
    4. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    5. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    6. Katharine M. Willett & Nathan P. Gillett & Philip D. Jones & Peter W. Thorne, 2007. "Attribution of observed surface humidity changes to human influence," Nature, Nature, vol. 449(7163), pages 710-712, October.
    7. John C. Fyfe & Nathan P. Gillett & Francis W. Zwiers, 2013. "Overestimated global warming over the past 20 years," Nature Climate Change, Nature, vol. 3(9), pages 767-769, September.
    8. E. M. Fischer & R. Knutti, 2013. "Robust projections of combined humidity and temperature extremes," Nature Climate Change, Nature, vol. 3(2), pages 126-130, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poppick, Andrew & McKinnon, Karen A., 2020. "Observation-based Simulations of Humidity and Temperature Using Quantile Regression," Earth Arxiv bmskp, Center for Open Science.
    2. Xi Chen & Ning Li & Jiawei Liu & Zhengtao Zhang & Yuan Liu, 2019. "Global Heat Wave Hazard Considering Humidity Effects during the 21st Century," IJERPH, MDPI, vol. 16(9), pages 1-11, April.
    3. Ali Ahmadalipour & Hamid Moradkhani & Mukesh Kumar, 2019. "Mortality risk from heat stress expected to hit poorest nations the hardest," Climatic Change, Springer, vol. 152(3), pages 569-579, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    2. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    3. Audrey Brouillet & Sylvie Joussaume, 2020. "More perceived but not faster evolution of heat stress than temperature extremes in the future," Climatic Change, Springer, vol. 162(2), pages 527-544, September.
    4. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    5. Ben Clarke & Friederike Otto & Richard Jones, 2023. "When don’t we need a new extreme event attribution study?," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    6. Nick Obradovich, 2017. "Climate change may speed democratic turnover," Climatic Change, Springer, vol. 140(2), pages 135-147, January.
    7. Yulong Yao & Wei Zhang & Ben Kirtman, 2023. "Increasing impacts of summer extreme precipitation and heatwaves in eastern China," Climatic Change, Springer, vol. 176(10), pages 1-20, October.
    8. Ana Casanueva & Annkatrin Burgstall & Sven Kotlarski & Alessandro Messeri & Marco Morabito & Andreas D. Flouris & Lars Nybo & Christoph Spirig & Cornelia Schwierz, 2019. "Overview of Existing Heat-Health Warning Systems in Europe," IJERPH, MDPI, vol. 16(15), pages 1-22, July.
    9. Jakob Petersson & Kalev Kuklane & Chuansi Gao, 2019. "Is There a Need to Integrate Human Thermal Models with Weather Forecasts to Predict Thermal Stress?," IJERPH, MDPI, vol. 16(22), pages 1-18, November.
    10. Xi Chen & Ning Li & Jiawei Liu & Zhengtao Zhang & Yuan Liu, 2019. "Global Heat Wave Hazard Considering Humidity Effects during the 21st Century," IJERPH, MDPI, vol. 16(9), pages 1-11, April.
    11. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    12. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    13. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    14. Baruch Ziv & Hadas Saaroni, 2011. "The contribution of moisture to heat stress in a period of global warming: the case of the Mediterranean," Climatic Change, Springer, vol. 104(2), pages 305-315, January.
    15. Schallaböck, Karl Otto & Fischedick, Manfred & Brouns, Bernd & Luhmann, Hans-Jochen & Merten, Frank, 2006. "Klimawirksame Emissionen des PKW-Verkehrs und Bewertung von Minderungsstrategien," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 34, number 34.
    16. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    17. Michel Beine & Ilan Noy & Christopher Parsons, 2021. "Climate change, migration and voice," Climatic Change, Springer, vol. 167(1), pages 1-27, July.
    18. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    19. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    20. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:138:y:2016:i:1:d:10.1007_s10584-016-1708-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.