IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v15y2007i4p329-349.html
   My bibliography  Save this article

Real-time split-delivery pickup and delivery time window problems with transfers

Author

Listed:
  • Sam Thangiah
  • Adel Fergany
  • Salman Awan

Abstract

In this research we present the design and implementation of heuristics for solving split-delivery pickup and delivery time window problems with transfer (SDPDTWP) of shipments between vehicles for both static and real-time data sets. In the SDPDTWP each shipment is constrained with the earliest possible pickup time from the origin and the latest acceptable delivery time to a destination. Split-deliveries occur when two or more vehicles service the same origin or destination. The proposed heuristics were applied to both static and real-time data sets. The heuristics computed a solution, in a few seconds, for a static problem from the literature, achieving an improvement of 60% in distance in comparison to the published solution. In the real-time SDPDTWP problems, requests for pickup and delivery of a package, breakdown of a truck or insertion of a truck can occur after the vehicle has left the origin and is enroute to service the customers. Thirty data sets, each consisting of one to seven real-time customer or truck events, were used to test the efficiency of the heuristics. The heuristics obtained solutions to real-time data sets in under five seconds of CPU time. Copyright Springer-Verlag 2007

Suggested Citation

  • Sam Thangiah & Adel Fergany & Salman Awan, 2007. "Real-time split-delivery pickup and delivery time window problems with transfers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(4), pages 329-349, November.
  • Handle: RePEc:spr:cejnor:v:15:y:2007:i:4:p:329-349
    DOI: 10.1007/s10100-007-0035-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-007-0035-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-007-0035-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    2. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    3. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    4. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    5. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    6. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    7. Jaw, Jang-Jei & Odoni, Amedeo R. & Psaraftis, Harilaos N. & Wilson, Nigel H. M., 1986. "A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 243-257, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Chaojie & Thompson, Russell G. & Foliente, Greg & Kong, Xiang T.R., 2021. "An auction-enabled collaborative routing mechanism for omnichannel on-demand logistics through transshipment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    2. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    3. Yanik, Seda & Bozkaya, Burcin & deKervenoael, Ronan, 2014. "A new VRPPD model and a hybrid heuristic solution approach for e-tailing," European Journal of Operational Research, Elsevier, vol. 236(3), pages 879-890.
    4. Petr Kučera, 2012. "Different versions of the savings method for the time limited vehicle routing problem," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 60(7), pages 171-178.
    5. Masson, Renaud & Ropke, Stefan & Lehuédé, Fabien & Péton, Olivier, 2014. "A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes," European Journal of Operational Research, Elsevier, vol. 236(3), pages 849-862.
    6. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    7. Michael Drexl, 2014. "A Generic Heuristic for Vehicle Routing Problems with Multiple Synchronization Constraints," Working Papers 1412, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 04 Nov 2014.
    8. Renaud Masson & Fabien Lehuédé & Olivier Péton, 2013. "An Adaptive Large Neighborhood Search for the Pickup and Delivery Problem with Transfers," Transportation Science, INFORMS, vol. 47(3), pages 344-355, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    2. Kai Gutenschwager & Christian Niklaus & Stefan Voß, 2004. "Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 434-446, November.
    3. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    4. Fu, Liping, 2002. "Scheduling dial-a-ride paratransit under time-varying, stochastic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 485-506, July.
    5. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    6. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    7. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    8. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    9. Phan Nguyen Ky Phuc & Nguyen Le Phuong Thao, 2021. "Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets," Logistics, MDPI, vol. 5(2), pages 1-13, May.
    10. Berkoune, Djamel & Renaud, Jacques & Rekik, Monia & Ruiz, Angel, 2012. "Transportation in disaster response operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 23-32.
    11. Funke, Julia & Kopfer, Herbert, 2016. "A model for a multi-size inland container transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 70-85.
    12. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    13. Gronalt, Manfred & Hartl, Richard F. & Reimann, Marc, 2003. "New savings based algorithms for time constrained pickup and delivery of full truckloads," European Journal of Operational Research, Elsevier, vol. 151(3), pages 520-535, December.
    14. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    15. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    16. Fleming, Christopher L. & Griffis, Stanley E. & Bell, John E., 2013. "The effects of triangle inequality on the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 1-7.
    17. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    18. del Castillo, Jose M., 1998. "A heuristic for the traveling salesman problem based on a continuous approximation," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 123-152, April.
    19. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
    20. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.

    More about this item

    Keywords

    Vehicle routing; Real-time; Pickup and delivery; Split-delivery; Dial-a-ride; R40;
    All these keywords.

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:15:y:2007:i:4:p:329-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.