IDEAS home Printed from https://ideas.repec.org/a/spr/aphecp/v9y2011i4p243-258.html
   My bibliography  Save this article

The use of decision-analytic models in Parkinson’s disease

Author

Listed:
  • James Shearer
  • Colin Green
  • Carl Counsell
  • John Zajicek

Abstract

The aims of this review were to review decision-analytic models used to evaluate interventions in idiopathic Parkinson’s disease (PD), and to consider the future directions for development of methods to model the progression of PD over time. A systematic search of the healthcare literature up to June 2010 identified model-based economic evaluations in PD. The modelling methods used in the identified studies were appraised using good practice guidelines for decision-analytic modelling. The review identified 18 model-based evaluations of interventions in PD. All models evaluated treatments targeted towards the motor symptoms of PD or the motor complications of PD treatment. There were no models identified that evaluated interventions targeted towards the non-motor symptoms of PD, such as neuropsychiatric problems or autonomic dysfunction. Consequently, models characterized disease progression in PD using clinical measures of motor functioning. Most studies (n=13) evaluated medications, three evaluated diagnostic technologies and two examined surgical procedures. Overall, the models reported structural components and data inputs appropriately and clearly, although limited evidence was provided to support choices made on the structures used in the models or the data synthesis reported. Models did not adequately consider structural uncertainty or internal/external consistency. Modelling methods used to date do not capture the full impact of PD. The emphasis in the current literature is on the motor symptoms of PD, characterizing the clinical nature of disease progression, largely neglecting the important impacts of non-motor symptoms. Modelling methods reported for the motor symptoms of PD may not be suitable for future interventions targeted towards modifying disease progression in PD across the entire spectrum of PD. More comprehensive models of disease progression, including both motor and non-motor symptoms will be needed where it is important to capture the effects of interventions more broadly. Copyright Adis Data Information BV 2011

Suggested Citation

  • James Shearer & Colin Green & Carl Counsell & John Zajicek, 2011. "The use of decision-analytic models in Parkinson’s disease," Applied Health Economics and Health Policy, Springer, vol. 9(4), pages 243-258, July.
  • Handle: RePEc:spr:aphecp:v:9:y:2011:i:4:p:243-258
    DOI: 10.2165/11590160-000000000-00000
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2165/11590160-000000000-00000
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.2165/11590160-000000000-00000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Lois G. Kim & Simon G. Thompson, 2010. "Uncertainty and validation of health economic decision models," Health Economics, John Wiley & Sons, Ltd., vol. 19(1), pages 43-55, January.
    3. Ivar Kristiansen & Kerstin Bingefors & Dag Nyholm & Dag Isacson, 2009. "Short-term cost and health consequences of duodenal levodopa infusion in advanced Parkinson’s disease in Sweden," Applied Health Economics and Health Policy, Springer, vol. 7(3), pages 167-180, September.
    4. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310, December.
    5. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Tomini & F. Prinzen & A. D. I. Asselt, 2016. "A review of economic evaluation models for cardiac resynchronization therapy with implantable cardioverter defibrillators in patients with heart failure," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(9), pages 1159-1172, December.
    2. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    3. Sun-Young Kim & Sue Goldie, 2008. "Cost-Effectiveness Analyses of Vaccination Programmes," PharmacoEconomics, Springer, vol. 26(3), pages 191-215, March.
    4. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    5. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    6. Heß, Michael (Ed.) & Schlieter, Hannes (Ed.), 2014. "Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung 2014," ICB Research Reports 57, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
    7. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    8. Gemma E. Shields & Mark Wilberforce & Paul Clarkson & Tracey Farragher & Arpana Verma & Linda M. Davies, 2022. "Factors Limiting Subgroup Analysis in Cost-Effectiveness Analysis and a Call for Transparency," PharmacoEconomics, Springer, vol. 40(2), pages 149-156, February.
    9. Mattias Ekman & Peter Lindgren & Carolin Miltenburger & Genevieve Meier & Julie Locklear & Mary Chatterton, 2012. "Cost Effectiveness of Quetiapine in Patients with Acute Bipolar Depression and in Maintenance Treatment after an Acute Depressive Episode," PharmacoEconomics, Springer, vol. 30(6), pages 513-530, June.
    10. Koen Degeling & Maarten J. IJzerman & Mariel S. Lavieri & Mark Strong & Hendrik Koffijberg, 2020. "Introduction to Metamodeling for Reducing Computational Burden of Advanced Analyses with Health Economic Models: A Structured Overview of Metamodeling Methods in a 6-Step Application Process," Medical Decision Making, , vol. 40(3), pages 348-363, April.
    11. Hiral Anil Shah & Tim Baker & Carl Otto Schell & August Kuwawenaruwa & Khamis Awadh & Karima Khalid & Angela Kairu & Vincent Were & Edwine Barasa & Peter Baker & Lorna Guinness, 2023. "Cost Effectiveness of Strategies for Caring for Critically Ill Patients with COVID-19 in Tanzania," PharmacoEconomics - Open, Springer, vol. 7(4), pages 537-552, July.
    12. Judith Dams & Bernhard Bornschein & Jens Reese & Annette Conrads-Frank & Wolfgang Oertel & Uwe Siebert & Richard Dodel, 2011. "Modelling the Cost Effectiveness of Treatments for Parkinson’s Disease," PharmacoEconomics, Springer, vol. 29(12), pages 1025-1049, December.
    13. Elena Losina & Elizabeth E Dervan & A David Paltiel & Yan Dong & R John Wright & Kurt P Spindler & Lisa A Mandl & Morgan H Jones & Robert G Marx & Clare E Safran-Norton & Jeffrey N Katz, 2015. "Defining the Value of Future Research to Identify the Preferred Treatment of Meniscal Tear in the Presence of Knee Osteoarthritis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    14. Anna K. Lugnér & Sido D. Mylius & Jacco Wallinga, 2010. "Dynamic versus static models in cost‐effectiveness analyses of anti‐viral drug therapy to mitigate an influenza pandemic," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 518-531, May.
    15. J. Jaime Caro & Andrew H. Briggs & Uwe Siebert & Karen M. Kuntz, 2012. "Modeling Good Research Practices—Overview," Medical Decision Making, , vol. 32(5), pages 667-677, September.
    16. G. Ramos & Antoinette Asselt & Sandra Kuiper & Johan Severens & Tanja Maas & Edward Dompeling & J. Knottnerus & Onno Schayck, 2014. "Cost-effectiveness of primary prevention of paediatric asthma: a decision-analytic model," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(8), pages 869-883, November.
    17. Gordon B. Hazen, 2022. "Augmenting Markov Cohort Analysis to Compute (Co)Variances: Implications for Strength of Cost-Effectiveness," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3170-3180, November.
    18. Mylene Lagarde & John Cairns, 2012. "Modelling human resources policies with Markov models: an illustration with the South African nursing labour market," Health Care Management Science, Springer, vol. 15(3), pages 270-282, September.
    19. Ulla K. Griffiths & Benedict Anigbogu & Kiran Nanchahal, 2012. "Economic evaluations of adult weight management interventions," Applied Health Economics and Health Policy, Springer, vol. 10(3), pages 145-162, May.
    20. Emma McManus & Tracey Sach & Nick Levell, 2018. "The Use of Decision–Analytic Models in Atopic Eczema: A Systematic Review and Critical Appraisal," PharmacoEconomics, Springer, vol. 36(1), pages 51-66, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aphecp:v:9:y:2011:i:4:p:243-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.