IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v315y2022i1d10.1007_s10479-022-04677-5.html
   My bibliography  Save this article

Homogeneous grouping of non-prime steel products for online auctions: a case study

Author

Listed:
  • Borja Ena

    (ArcelorMittal, Global R&D Asturias)

  • Alberto Gomez

    (University of Oviedo)

  • Borja Ponte

    (University of Oviedo)

  • Paolo Priore

    (University of Oviedo)

  • Diego Diaz

    (ArcelorMittal, Global R&D Asturias)

Abstract

Not all products meet customers’ quality expectations after the steelmaking process. Some of them, labelled as ‘non-prime’ products, are sold in a periodic online auction. These products need to be grouped into the smallest feasible number of bundles as homogeneous as possible, as this increases the attractiveness of the bundles and hence their selling prices. This results in a highly complex optimisation problem, also conditioned by other requirements, with large economic implications. It may be interpreted as a variant of the well-known bin packing problem. In this article, we formalise it mathematically by studying the real problem faced by a multinational in the steel industry. We also propose a structured, three-stage solution procedure: (i) initial division of the products according to their characteristics; (ii) cluster analysis; and (iii) allocation of products to bundles via optimisation methods. In the last stage, we implement three heuristic algorithms: FIFO, greedy, and distance-based. Building on previous works, we develop 80 test instances, which we use to compare the heuristics. We observe that the greedy algorithm generally outperforms its competitors; however, the distance-based one proves to be more appropriate for large sets of products. Last, we apply the proposed solution procedure to real-world datasets and discuss the benefits obtained by the organisation.

Suggested Citation

  • Borja Ena & Alberto Gomez & Borja Ponte & Paolo Priore & Diego Diaz, 2022. "Homogeneous grouping of non-prime steel products for online auctions: a case study," Annals of Operations Research, Springer, vol. 315(1), pages 591-621, August.
  • Handle: RePEc:spr:annopr:v:315:y:2022:i:1:d:10.1007_s10479-022-04677-5
    DOI: 10.1007/s10479-022-04677-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04677-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04677-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholl, Armin & Klein, Robert & Jürgens, Christian, 1996. "BISON : a fast hybrid procedure for exactly solving the one-dimensional bin packing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 49135, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Polyakovskiy, Sergey & M’Hallah, Rym, 2021. "Just-in-time two-dimensional bin packing," Omega, Elsevier, vol. 102(C).
    3. Gang Kou & Chunwei Lou, 2012. "Multiple factor hierarchical clustering algorithm for large scale web page and search engine clickstream data," Annals of Operations Research, Springer, vol. 197(1), pages 123-134, August.
    4. Baldi, Mauro Maria & Manerba, Daniele & Perboli, Guido & Tadei, Roberto, 2019. "A Generalized Bin Packing Problem for parcel delivery in last-mile logistics," European Journal of Operational Research, Elsevier, vol. 274(3), pages 990-999.
    5. Moustapha Diaby, 2010. "Linear programming formulation of the vertex colouring problem," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 2(3), pages 259-289.
    6. Wun-Tat Chan & Francis Y.-L. Chin & Deshi Ye & Guochuan Zhang & Yong Zhang, 2007. "Online bin packing of fragile objects with application in cellular networks," Journal of Combinatorial Optimization, Springer, vol. 14(4), pages 427-435, November.
    7. Klaus Jansen, 1999. "An Approximation Scheme for Bin Packing with Conflicts," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 363-377, December.
    8. Ruslan Sadykov & François Vanderbeck, 2013. "Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 244-255, May.
    9. Eunice López-Camacho & Gabriela Ochoa & Hugo Terashima-Marín & Edmund Burke, 2013. "An effective heuristic for the two-dimensional irregular bin packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 241-264, July.
    10. Are Denstad & Einar Ulsund & Marielle Christiansen & Lars Magnus Hvattum & Gregorio Tirado, 2021. "Multi-objective optimization for a strategic ATM network redesign problem," Annals of Operations Research, Springer, vol. 296(1), pages 7-33, January.
    11. Gregory S. Taylor & Yupo Chan & Ghulam Rasool, 2017. "A three-dimensional bin-packing model: exact multicriteria solution and computational complexity," Annals of Operations Research, Springer, vol. 251(1), pages 397-427, April.
    12. Albert E. Fernandes Muritiba & Manuel Iori & Enrico Malaguti & Paolo Toth, 2010. "Algorithms for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 401-415, August.
    13. Kang, Jangha & Park, Sungsoo, 2003. "Algorithms for the variable sized bin packing problem," European Journal of Operational Research, Elsevier, vol. 147(2), pages 365-372, June.
    14. H. Kellerer & U. Pferschy, 1999. "Cardinality constrained bin‐packing problems," Annals of Operations Research, Springer, vol. 92(0), pages 335-348, January.
    15. Samir Elhedhli & Lingzi Li & Mariem Gzara & Joe Naoum-Sawaya, 2011. "A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 404-415, August.
    16. Johnson, Jeremiah & Reck, B.K. & Wang, T. & Graedel, T.E., 2008. "The energy benefit of stainless steel recycling," Energy Policy, Elsevier, vol. 36(1), pages 181-192, January.
    17. Annette M. C. Ficker & Frits C. R. Spieksma & Gerhard J. Woeginger, 2021. "The transportation problem with conflicts," Annals of Operations Research, Springer, vol. 298(1), pages 207-227, March.
    18. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekici, Ali, 2023. "A large neighborhood search algorithm and lower bounds for the variable-Sized bin packing problem with conflicts," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1007-1020.
    2. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    3. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    4. Fleszar, Krzysztof, 2022. "A MILP model and two heuristics for the Bin Packing Problem with Conflicts and Item Fragmentation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 37-53.
    5. Andrea Bettinelli & Valentina Cacchiani & Enrico Malaguti, 2017. "A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 457-473, August.
    6. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    7. Hu, Qian & Zhu, Wenbin & Qin, Hu & Lim, Andrew, 2017. "A branch-and-price algorithm for the two-dimensional vector packing problem with piecewise linear cost function," European Journal of Operational Research, Elsevier, vol. 260(1), pages 70-80.
    8. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    9. Saharnaz Mehrani & Carlos Cardonha & David Bergman, 2022. "Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1070-1085, March.
    10. Şuvak, Zeynep & Altınel, İ. Kuban & Aras, Necati, 2020. "Exact solution algorithms for the maximum flow problem with additional conflict constraints," European Journal of Operational Research, Elsevier, vol. 287(2), pages 410-437.
    11. Walaa H. El-Ashmawi & Ahmad Salah & Mahmoud Bekhit & Guoqing Xiao & Khalil Al Ruqeishi & Ahmed Fathalla, 2023. "An Adaptive Jellyfish Search Algorithm for Packing Items with Conflict," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    12. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    13. Luciano Costa & Claudio Contardo & Guy Desaulniers & Julian Yarkony, 2022. "Stabilized Column Generation Via the Dynamic Separation of Aggregated Rows," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1141-1156, March.
    14. Daniel Kowalczyk & Roel Leus, 2017. "An exact algorithm for parallel machine scheduling with conflicts," Journal of Scheduling, Springer, vol. 20(4), pages 355-372, August.
    15. Ruslan Sadykov & François Vanderbeck, 2013. "Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 244-255, May.
    16. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    17. Chung‐Lun Li & Zhi‐Long Chen, 2006. "Bin‐packing problem with concave costs of bin utilization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 298-308, June.
    18. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    19. Schepler, Xavier & Rossi, André & Gurevsky, Evgeny & Dolgui, Alexandre, 2022. "Solving robust bin-packing problems with a branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 297(3), pages 831-843.
    20. Samir Elhedhli & Lingzi Li & Mariem Gzara & Joe Naoum-Sawaya, 2011. "A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 404-415, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:315:y:2022:i:1:d:10.1007_s10479-022-04677-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.