IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i2d10.1007_s10479-020-03587-8.html
   My bibliography  Save this article

Influence control method on directed weighted signed graphs with deterministic causality

Author

Listed:
  • Alexander Tselykh

    (Southern Federal University)

  • Vladislav Vasilev

    (Southern Federal University)

  • Larisa Tselykh

    (Rostov State University of Economics)

  • Fernando A. F. Ferreira

    (University Institute of Lisbon
    University of Memphis)

Abstract

Making an incorrect determination or ignoring a factor or interaction in a real-world socioeconomic system can greatly affect the functioning of the entire system, which in turn can lead to misconceptions and incorrect managerial decisions. Considering graph models of socioeconomic systems as the research object, where deterministic causality property is the fundamental characteristic of a graph edge, this study addresses the problem of influence control in models represented by directed weighted signed graphs with deterministic causality on edges. Influence control is considered from the point of view of the choice of influential nodes as points of application of control impacts, providing the possibility of targeted control in real-world socioeconomic systems. The algorithm of influence controls (AIC) is proposed as a tool to identify optimal control impacts. The algorithm maximizes the influence under the control model and uses a system of nonlinear constraints to design conditions for adequate model operation. The contributions made by this study are as follows: (1) the AIC validates the graph representation of the system under study; (2) by using AIC, new knowledge is discovered about important factors (i.e., target, or output) and influencing factors (i.e., impact objects, or input); (3) the appropriate metrics allow for the assessment of the compliance of this result with the degree of codirectionality of the response vector and the basic directionality vector of the system; and (4) the algorithm imposes no restrictions on the direction, sign or range of weights on the edges.

Suggested Citation

  • Alexander Tselykh & Vladislav Vasilev & Larisa Tselykh & Fernando A. F. Ferreira, 2022. "Influence control method on directed weighted signed graphs with deterministic causality," Annals of Operations Research, Springer, vol. 311(2), pages 1281-1305, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03587-8
    DOI: 10.1007/s10479-020-03587-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03587-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03587-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreira, Carolina A. & de Aguiar, Marcus A.M., 2019. "Global synchronization of partially forced Kuramoto oscillators on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 487-496.
    2. Ferreira, Fernando A.F. & Jalali, Marjan S. & Ferreira, João J.M., 2016. "Integrating qualitative comparative analysis (QCA) and fuzzy cognitive maps (FCM) to enhance the selection of independent variables," Journal of Business Research, Elsevier, vol. 69(4), pages 1471-1478.
    3. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    4. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    5. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    6. Jun-Lan, Xie & Shu-Bin, Si & Dong-Li, Duan & Chang-Chun, Lv & Fei-Fei, Xv, 2019. "Identification of influencers in networks with dynamic behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    7. Shashank Sheshar Singh & Ajay Kumar & Shivansh Mishra & Kuldeep Singh & Bhaskar Biswas, 2019. "Influence Maximization in Social Networks," Springer Optimization and Its Applications, in: Mahdi Fathi & Marzieh Khakifirooz & Panos M. Pardalos (ed.), Optimization in Large Scale Problems, pages 255-267, Springer.
    8. Helbing, Dirk & Kühnert, Christian, 2003. "Assessing interaction networks with applications to catastrophe dynamics and disaster management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(3), pages 584-606.
    9. Maria J. M. Ladeira & Fernando A. F. Ferreira & João J. M. Ferreira & Wenchang Fang & Pedro F. Falcão & Álvaro A. Rosa, 2019. "Exploring the determinants of digital entrepreneurship using fuzzy cognitive maps," International Entrepreneurship and Management Journal, Springer, vol. 15(4), pages 1077-1101, December.
    10. Le-Zhi Wang & Ri-Qi Su & Zi-Gang Huang & Xiao Wang & Wen-Xu Wang & Celso Grebogi & Ying-Cheng Lai, 2016. "A geometrical approach to control and controllability of nonlinear dynamical networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    11. Wu, Shuchen & Sun, Xiaohui & Li, Xiaodi & Wang, Haipeng, 2020. "On controllability and observability of impulsive control systems with delayed impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 65-78.
    12. Alipour, M. & Hafezi, R. & Amer, M. & Akhavan, A.N., 2017. "A new hybrid fuzzy cognitive map-based scenario planning approach for Iran's oil production pathways in the post–sanction period," Energy, Elsevier, vol. 135(C), pages 851-864.
    13. Singh, Shashank Sheshar & Singh, Kuldeep & Kumar, Ajay & Biswas, Bhaskar, 2019. "MIM2: Multiple influence maximization across multiple social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    14. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    3. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    4. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    5. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    6. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    7. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    9. Braga, Irina F.B. & Ferreira, Fernando A.F. & Ferreira, João J.M. & Correia, Ricardo J.C. & Pereira, Leandro F. & Falcão, Pedro F., 2021. "A DEMATEL analysis of smart city determinants," Technology in Society, Elsevier, vol. 66(C).
    10. Ding, Jin & Lu, Yong-Zai & Chu, Jian, 2013. "Studies on controllability of directed networks with extremal optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6603-6615.
    11. Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    12. Priyan Bhattacharya & Karthik Raman & Arun K Tangirala, 2022. "Discovering adaptation-capable biological network structures using control-theoretic approaches," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-28, January.
    13. Pang, Shao-Peng & Hao, Fei, 2018. "Target control of edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 14-26.
    14. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    15. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    16. Ren, Baoan & Zhang, Yu & Chen, Jing & Shen, Lincheng, 2019. "Efficient network disruption under imperfect information: The sharpening effect of network reconstruction with no prior knowledge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 196-207.
    17. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    18. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    19. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    20. Tselykh, Alexander & Vasilev, Vladislav & Tselykh, Larisa, 2019. "Clustering method based on the elastic energy functional of directed signed weighted graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 392-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03587-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.