IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009769.html
   My bibliography  Save this article

Discovering adaptation-capable biological network structures using control-theoretic approaches

Author

Listed:
  • Priyan Bhattacharya
  • Karthik Raman
  • Arun K Tangirala

Abstract

Constructing biological networks capable of performing specific biological functionalities has been of sustained interest in synthetic biology. Adaptation is one such ubiquitous functional property, which enables every living organism to sense a change in its surroundings and return to its operating condition prior to the disturbance. In this paper, we present a generic systems theory-driven method for designing adaptive protein networks. First, we translate the necessary qualitative conditions for adaptation to mathematical constraints using the language of systems theory, which we then map back as ‘design requirements’ for the underlying networks. We go on to prove that a protein network with different input–output nodes (proteins) needs to be at least of third-order in order to provide adaptation. Next, we show that the necessary design principles obtained for a three-node network in adaptation consist of negative feedback or a feed-forward realization. We argue that presence of a particular class of negative feedback or feed-forward realization is necessary for a network of any size to provide adaptation. Further, we claim that the necessary structural conditions derived in this work are the strictest among the ones hitherto existed in the literature. Finally, we prove that the capability of producing adaptation is retained for the admissible motifs even when the output node is connected with a downstream system in a feedback fashion. This result explains how complex biological networks achieve robustness while keeping the core motifs unchanged in the context of a particular functionality. We corroborate our theoretical results with detailed and thorough numerical simulations. Overall, our results present a generic, systematic and robust framework for designing various kinds of biological networks.Author summary: Biological systems display a remarkable diversity of functionalities, many of which can be conceived as the response of a large network composed of small interconnecting modules. Unravelling the connection pattern, i.e. design principles, behind important biological functionalities is one of the most challenging problems in systems biology. One such phenomenon is perfect adaptation, which merits special attention owing to its universal presence ranging from chemotaxis in bacterial cells to calcium homeostasis in mammalian cells. The present work focuses on finding the design principles for perfect adaptation in the presence of a stair-case type disturbance. To this end, the current work proposes a systems-theoretic approach to deduce precise mathematical (hence structural) conditions that comply with the key performance parameters for adaptation. The approach is agnostic to the particularities of the reaction kinetics, underlining the dominant role of the topological structure on the response of the network. Notably, the design principles obtained in this work serve as the most strict necessary structural conditions for a network of any size to provide perfect adaptation.

Suggested Citation

  • Priyan Bhattacharya & Karthik Raman & Arun K Tangirala, 2022. "Discovering adaptation-capable biological network structures using control-theoretic approaches," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-28, January.
  • Handle: RePEc:plo:pcbi00:1009769
    DOI: 10.1371/journal.pcbi.1009769
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009769
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009769&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    2. Le-Zhi Wang & Ri-Qi Su & Zi-Gang Huang & Xiao Wang & Wen-Xu Wang & Celso Grebogi & Ying-Cheng Lai, 2016. "A geometrical approach to control and controllability of nonlinear dynamical networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    2. Alexander Tselykh & Vladislav Vasilev & Larisa Tselykh & Fernando A. F. Ferreira, 2022. "Influence control method on directed weighted signed graphs with deterministic causality," Annals of Operations Research, Springer, vol. 311(2), pages 1281-1305, April.
    3. Pang, Shao-Peng & Hao, Fei, 2018. "Target control of edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 14-26.
    4. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    5. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    6. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    7. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    8. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    9. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    10. Bo Zhang & Jianping Yuan & J. F. Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Global Feedback Control for Coordinated Linear Switched Reluctance Machines Network with Full-State Observation and Internal Model Compensation," Energies, MDPI, vol. 10(12), pages 1-19, December.
    11. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    13. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    14. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    15. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    16. Neil Johnson & Guannan Zhao & Eric Hunsader & Jing Meng & Amith Ravindar & Spencer Carran & Brian Tivnan, 2012. "Financial black swans driven by ultrafast machine ecology," Papers 1202.1448, arXiv.org.
    17. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    18. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    19. Badhwar, Rahul & Bagler, Ganesh, 2017. "A distance constrained synaptic plasticity model of C. elegans neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 313-322.
    20. Lazaro M Sanchez-Rodriguez & Yasser Iturria-Medina & Erica A Baines & Sabela C Mallo & Mehdy Dousty & Roberto C Sotero & on behalf of The Alzheimer’s Disease Neuroimaging Initiative, 2018. "Design of optimal nonlinear network controllers for Alzheimer's disease," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.